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Multiplicative Lie triple derivations on standard
operator algebras

Bilal Ahmad Wani

Abstract. Let X be a Banach space of dimension n > 1 and A ⊂ B(X )
be a standard operator algebra. In the present paper it is shown that if a
mapping d : A→ A (not necessarily linear) satisfies

d([[U, V ],W ]) = [[d(U), V ],W ] + [[U, d(V )],W ] + [[U, V ], d(W )]

for all U, V,W ∈ A, then d = ψ + τ , where ψ is an additive derivation of A
and τ : A→ FI vanishes at second commutator [[U, V ],W ] for all U, V,W ∈
A. Moreover, if d is linear and satisfies the above relation, then there
exists an operator S ∈ A and a linear mapping τ from A into FI satisfying
τ([[U, V ],W ]) = 0 for all U, V,W ∈ A, such that d(U) = SU − US + τ(U)
for all U ∈ A.

1 Introduction
Let A be an associative algebra over a field F. Recall that a linear mapping
d : A → A is said to be a derivation if d(UV ) = d(U)V + Ud(V ) holds for all
U, V ∈ A. If the condition of linearity is replaced by additivity in the above def-
inition, then d is said to be an additive derivation. In particular, derivation d is
called an inner derivation if there exists some X ∈ A such that d(U) = UX −XU
for all U ∈ A. A linear mapping d : A→ A is called a Lie (resp. Lie triple) deriva-
tion if d([U, V ]) = [d(U), V ] + [U, d(V )] (resp. d([[U, V ],W ]) = [[d(U), V ],W ] +
[[U, d(V )],W ] + [[U, V ], d(W )]) holds for all U, V,W ∈ A, where [U, V ] = UV −V U
is the usual Lie product. If the condition of linearity is dropped from the above
definition, then the corresponding Lie derivation and Lie triple derivation are called
multiplicative Lie derivation and multiplicative Lie triple derivation respectively.
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Obviously, every derivation is a Lie derivation and every Lie derivation is a Lie
triple derivation. However, the converse statements are not true in general.

There has been a great interest in the study of characterization of Lie deriva-
tions and Lie triple derivations for many years. The first quite surprising result
is due to Martindale who proved that every multiplicative bijective mapping from
a prime ring containing a nontrivial idempotent onto an arbitrary ring is additive
(see [13]). Miers [14] initially established that every Lie derivation d on a von Neu-
mann algebra A can be uniquely written as the sum d = δ + τ where δ is an inner
derivation of A and τ is a linear mapping from A into its center Z(A) vanishing on
each commutator. Furthermore, Miers [15] obtained an analogous decomposition
for Lie triple derivations of von Neumann algebras with no abelian summands. Yu
and Zhang [18] proved that every nonlinear Lie derivation of triangular algebras
is the sum of an additive derivation and a map from triangular algebra into its
center sending commutators to zero. Ji, Liu and Zhao [6] proved the similar result
for nonlinear Lie triple derivation of triangular algebras. Zhang, Wu and Cao [19]
studied Lie triple derivation on nest algebras. Mathieu and Villena [12] gave the
characterizations of Lie derivations on C∗-algebras. In addition, the characteriza-
tion of Lie derivations and Lie triple derivations on various algebras are considered
in [1], [2],[3], [5],[6],[9], [7], [10], [16],[17], [20].

It is the objective of this article is to investigate multiplicative Lie triple deriva-
tions on Banach space standard operator algebras. Motivated by the work of F. Lu
and B. Liu [11], in Section 2, we study the characterization of multiplicative Lie
triple derivations on standard operator algebras.

2 Multiplicative Lie Triple derivations
Throughout this paper, X represents a Banach space over F, where F is the real
field R or the complex field C. By X ∗ and B(X ) we denote the topological dual
space of X and the algebra of all linear bounded operators on X , respectively. If
x ∈ X and f ∈ X ∗, then rank one operator is x ⊗ f is defined by y 7→ f(y)x for
y ∈ X . A subalgebra A ⊂ B(X ) is called a standard operator algebra if all the
bounded finite rank operators are contained in A. An algebra A is said to be prime
if AAB = 0 implies either A = 0 or B = 0. It is to be noted that every standard
operator algebra is prime. Motivated by the work of Jing [11], we have obtained
the following main result.

Theorem 1. Let X be a Banach space of dimension n > 1 and A ⊂ B(X ) be a
standard operator algebra. Suppose that a map d : A→ A satisfies

d([[U, V ],W ]) = [[d(U), V ],W ] + [[U, d(V )],W ] + [[U, V ], d(W )] , (1)

for all U, V,W ∈ A. Then d = ψ + τ , where ψ is an additive derivation and τ is a
mapping from A into FI satisfying τ([[U, V ],W ]) = 0 for all U, V,W ∈ A.

In particular, if d is linear and satisfies equation (1), then there exist an operator
S ∈ A and a linear mapping τ from A into FI that vanishes at second commutators
[[U, V ],W ], such that d(U) = SU − US + τ(U) for all U ∈ A.

For the convenience, in the sequel, take x0 ∈ X , f0 ∈ X ∗ satisfying f0(x0) = 1.
Let P = x0⊗f0 and Q = I−P be idempotent of A, it is obvious that PQ = QP = 0.
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Then A = A11 + A12 + A21 + A22, where A11 = PAP , A12 = PAQ, A21 = QAP
and A22 = QAQ. We facilitate our discussion with the following known results.

Lemma 1. [4, Problem 230] Suppose A is a Banach algebra with the identity I. If
A,B ∈ A and λ ∈ F are such that [A,B] = λI, then λ = 0.

Lemma 2. [8, Lemma 2 (ii)] For U = U11 + U12 + U21 + U22 ∈ A. If UijVjk = 0
for every Uij ∈ Aij, 1 ≤ i, j, k ≤ 2, then Vjk = 0. Dually, if VkiUij = 0 for every
Uij ∈ Aij, 1 ≤ i, j, k ≤ 2, then Vki = 0.

Now we shall use the hypothesis of Theorem 1 freely without any specific mention
in proving the following lemmas.

Lemma 3. Let Uii ∈ Aii, i = 1, 2. If U11V12 = V12U22 for all V12 ∈ A12, then
U11 + U22 ∈ FI.

Proof. For any V11 ∈ A11 and V12 ∈ A12, we get

U11V11V12 = V11V12U22 = V11U11V12

for all V12 ∈ A12. As A is prime, we have U11V11 = V11U11.
For any V12 ∈ A12 and V22 ∈ A22, we get

V12V22U22 = U11V12V22 = V12U22V22

for all V12 ∈ A12. It follows by the primeness of A that V22U22 = U22V22.
For any V12 ∈ A12 and V21 ∈ A21, we get

U22V21V12 = V21V12U22 = V21U11V12

for all V12 ∈ A12. It follows that U22V21 = V21U22.
For any V ∈ A, we have

(U11 + U22)V = (U11 + U22)(V11 + V12 + V21 + V22)

= U11V11 + U11V12 + U22V21 + U22V22

= V11U11 + V12U11 + V21U22 + V22U22

= (V11 + V12 + V21 + V22)(U11 + U22)

= V (U11 + U22).

Hence it follows that U11 + U22 ∈ FI. �

Lemma 4. d(0) = 0.

Proof.

d(0) = d([[0, 0], 0]) =
[
[d(0), 0], 0

]
+
[
[0, d(0)], 0

]
+
[
[0, 0], d(0)

]
= 0 .

�
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Lemma 5. Pd(P )P +Qd(P )Q ∈ FI.

Proof. Let x ∈ X , f ∈ X ∗. Then

d(Px⊗Q∗f) = d([[Px⊗Q∗f, P ], P ]) = [[d(Px⊗Q∗f), P ], P ]

+ [[Px⊗Q∗f, d(P )], P ] + [[Px⊗Q∗f, P ], d(P )]

= Qd(Px⊗Q∗f)P + Pd(Px⊗Q∗f)Q− Px⊗Q∗fd(P )Q

+ Pd(P )Px⊗Q∗f − Px⊗Q∗fd(P ) + d(P )Px⊗Q∗f.

Multiplying the above identity from the left by P and from the right by Q, we
arrive at

Px⊗Q∗fd(P )Q = Pd(P )Px⊗Q∗f.

Equivalently,
Px⊗ fQd(P )Q = Pd(P )Px⊗ fQ.

It follows that Pd(P )P = λP and Qd(P )Q = λQ for some λ ∈ C. Hence Pd(P )P+
Qd(P )Q = λI. �

In the sequel, we define φ : A→ A by

φ(U) = d(U) + dPd(P )Q−Qd(P )P (U) for all U ∈ A

where dPd(P )Q−Qd(P )P is the inner derivation determined by Pd(P )Q −Qd(P )P .
It is easy to verify that

φ([[U, V ],W ]) =
[
[φ(U), V ],W

]
+
[
[U, φ(V )],W

]
+
[
[U, V ], φ(W )

]
holds for all U, V,W ∈ A. Moreover, by Lemma 5, we have

φ(P ) = d(P )− Pd(P )Q−Qd(P )P

= d(P )P + d(P )Q− Pd(P )Q−Qd(P )P

= Pd(P )P +Qd(P )Q

= λI.

Thus φ(P ) ∈ FI.

Lemma 6. φ(PUQ+QUP ) = Pφ(U)Q+Qφ(U)P for all U ∈ A.

Proof. Since [[U,P ], P ] = PU − 2PUP + UP = PUQ+QUP , it follows that

φ(PUQ+QUP ) = φ([[U,P ], P ]) = [[φ(U), P ], P ]

= Pφ(U)Q+Qφ(U)P.

�

Lemma 7. φ(Q) ∈ FI.
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Proof. Using the similar arguments as that used in the proof of Lemma 5, we get

Pφ(Q)P +Qφ(Q)Q ∈ FI.

Since φ(Q) = Pφ(Q)P + Pφ(Q)Q+Qφ(Q)P +Qφ(Q)Q, by Lemma 6, we have

Pφ(Q)Q+Qφ(Q)P = φ(PQQ+QQP ) = 0.

Consequently, we get φ(Q) = Pφ(Q)P +Qφ(Q)Q ∈ FI. �

Lemma 8. If [U, V ] ∈ FI for any U, V ∈ A, then [φ(U), V ] + [U, φ(V )] ∈ FI.

Proof. For [U, V ] ∈ FI, we have [[U, V ],W ] = 0 for all W ∈ A.

0 = φ(0) = φ[[U, V ],W ] = [[φ(U), V ],W ] + [[U, φ(V )],W ]

= [[φ(U), V ] + [U, φ(V )],W ]

for all W ∈ A. Thus [φ(U), V ] + [U, φ(V )] ∈ FI. �

Lemma 9. φ(Uij) ⊆ Aij , 1 ≤ i 6= j ≤ 2.

Proof. For U12 ∈ A12, we have U12 = [[U12, P ], P ]. Thus

φ(U12) = φ([[U12, P ], P ]) = [[φ(U12), P ], P ] = Pφ(U12)Q+Qφ(U12)P,

and hence we see that Pφ(U12)P = Qφ(U12)Q = 0. Now for U12, V12 ∈ A12, by
Lemma 8, we have

[φ(U12), V12] + [U12, φ(V12)] = λI ∈ FI. (2)

Since U12 = [P,U12], by using (2), we find that

[φ(U12), V12] = [φ([P,U12]), V12] = λI − [[P,U12], φ(V12)]

= λI − φ([[P,U12], V12]) + [[φ(P ), U12], V12] + [[P, φ(U12)], V12]

= λI + [[P, φ(U12)], V12].

This implies that

[Pφ(U12)Q+Qφ(U12)P, V12] = λI + [[P, Pφ(U12)Q+Qφ(U12)P ], V12]

= λI + [Pφ(U12)Q−Qφ(U12)P, V12].

Hence [Qφ(U12)P, V12] = 1
2λI ∈ FI. It follows from Lemma 1 that [Qφ(U12)P, V12] =

0. Thus Qφ(U12)V12 = 0 and hence by Lemma 2, we have Qφ(U12)P = 0. So
φ(U12) = Pφ(U12)Q ∈ A12 for each U12 ∈ A12. This implies that φ(A12) ⊆ A12.

Similarly, φ(U21) = Qφ(U21)P ∈ A21 for each U21 ∈ A21 and therefore φ(A21) ⊆
A21. �

Lemma 10. There is a functional fi : Aii → FI such that φ(Uii) − fi(Uii)I ∈ Aii

for all Uii ∈ Aii, i = 1, 2.
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Proof. For U11 ∈ A11, by Lemma 6, we have

Pφ(U11)Q+Qφ(U11)P = φ(PU11Q+QU11P ) = 0.

Thus, it can be assumed that φ(U11) = A11 + A22 and φ(U22) = B11 + B22,
here Aii, Bii ∈ Aii, i = 1, 2. Since [U11, U22] = 0, then by Lemma 1, we have
[φ(U11), U22] + [U11, φ(U22)] = λI ∈ FI. Multiplying both sides by Q, we arrive at
[Qφ(U11)Q,U22] = λQ. Consequently, by Lemma 1, [Qφ(U11)Q,U22] = 0 for all
U22 ∈ A22. Similarly [U11, Pφ(U22)P ] = 0 for all U11 ∈ A11.

Equivalently, [A22, U22] = 0 for all U22 ∈ A22 and [U11, B11] = 0 for all U11 ∈
A11. Therefore, there exist scalars f1(U11) and f2(U22) such that A22 = f1(U11)Q
and B11 = f2(U22)P . Hence φ(U11)−f1(U11)I ∈ A11 and φ(U22)−f2(U22)I ∈ A22.

�

Our next aim is to show that φ is additive on A12 and A21.

Lemma 11. Let Uii ∈ Aii and Uij ∈ Aij, 1 ≤ i 6= j ≤ 2. Then φ(Uii + Uij) −
φ(Uii)− φ(Uij) ∈ FI.

Proof. Let U11 ∈ A11, U12 ∈ A12. We have

φ([[U11 + U12, P ], P ]) = [[φ(U11 + U12), P ], P ] + [[U11 + U12, φ(P )], P ]

+ [[U11 + U12, φ(P )], φ(P )]

= [[φ(U11 + U12), P ], P ].

On the other hand, we have

φ([[U11 + U12, P ], P ]) = φ([[U11, P ], P ]) + φ([[U12, P ], P ])

= [[φ(U12), P ], P ] + [[φ(U12), P ], P ].

Combining the above two identities, we get [[φ(U11+U12)−φ(U12)−φ(U12), P ], P ] =
0, that is

0 = P (φ(U11 + U12)− φ(U12)− φ(U12))Q

+Q(φ(U11 + U12)− φ(U12)− φ(U12))P. (3)

Now, for any V12 ∈ A12 and by Lemma 5, we have

φ([[U11 + U12, V12], P ]) =
[
[φ(U11 + U12), V12], P

]
+
[
[U11 + U12, φ(V12)], P

]
.

On the other hand, we have

φ
([

[U11 + U12, V12], P
])

= φ
([

[U11, V12], P
])

+ φ
([

[U12, V12], P
])

=
[
[φ(U11), V12], P

]
+
[
[U11, φ(V12)], P

]
+
[
[φ(U12), V12], P

]
+
[
[U12, φ(V12)], P

]
.

Combining the above two identities, we arrive at[
[φ(U11 + U12)− φ(U11)− φ(U12), V12], P

]
= 0 .
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In other words,

Pφ(U11 + U12)− φ(U11)− φ(U12)PV12

= V12Qφ(U11 + U12)− φ(U11)− φ(U12)Q. (4)

Equations (3) and (4), together with Lemma 3, gives that

φ(U11 + U12)− φ(U11)− φ(U12) ∈ FI .

Similarly, one can easily prove the other part. �

Lemma 12. φ is additive on A12 and A21.

Proof. Let U12, V12 ∈ A12. By Lemmas 5, 7 and 11, we see that

φ(U12 + V12) = φ
([

[P + U12, Q+ V12], Q
])

=
[
[φ(P + U12), Q+ V12], Q

]
+
[
[P + U12, φ(Q+ V12)], Q

]
+
[
[P + U12, Q+ V12], φ(Q)

]
=
[
[φ(P ) + φ(U12), Q+ V12], Q

]
+
[
[P + U12, φ(Q) + φ(V12)], Q

]
= φ(U12) + φ(V12).

Hence φ is additive on A12. Similarly φ is additive on A21. �

Now for any U ∈ A, define

∆(U) = φ(PUP ) + φ(PUQ) + φ(QUP ) + φ(QUQ)− (f1(PUP ) + f2(QUQ))I .

By Lemmas 9 and 10, we have

Lemma 13. Let Uij ∈ Aij, 1 ≤ i 6= j ≤ 2. Then

(i) ∆(Uij) ∈ Aij, 1 ≤ i 6= j ≤ 2,

(ii) ∆(U12) = φ(U12) and ∆(U21) = φ(U21),

(iii) ∆(U11 + U12 + U21 + U22) = ∆(U11) + ∆(U12) + ∆(U21) + ∆(U22).

Now, we shall show that ∆ is an additive derivation. First, we shall prove the
additivity of ∆.

By Lemma 12 and (ii) part of Lemma 13, we immediately get the following
result.

Lemma 14. ∆ is additive on A12 and A21.

Lemma 15. Let Uii ∈ Aii, Uij ∈ Aij, 1 ≤ i 6= j ≤ 2. Then

(i) ∆(UiiVij) = ∆(Uii)Vij + Uii∆(Vij),

(ii) ∆(VijUjj) = ∆(Vij)Ujj + Vij∆(Ujj).
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Proof. Since U11V12 = [[U11, V12], Q], by Lemmas 7 and 13, we have

∆(U11V12) = φ(U11V12) = φ([[U11, V12], Q])

= [[φ(U11), V12], Q] + [[U11, φ(V12)], Q] + [[U11, V12], φ(Q)]

= [[∆(U11), V12], Q] + [[U11,∆(V12)], Q]

= ∆(U11)V12 + U11∆(V12).

Similarly, it is easy to prove the other identities. �

Lemma 16. ∆ is additive on A11 and A22.

Proof. Let U11, V11 ∈ A11. For any W12 ∈ A12, by Lemma 15, we have

∆((U11 + V11)W12) = ∆(U11 + V11)W12 + (U11 + V11)∆(W12) .

On the other hand, by Lemmas 14 and 15, we have

∆((U11 + V11)W12) = ∆(U11W12 + V11W12) = ∆(U11W12) + ∆(V11W12)

= ∆(U11)W12 + U11∆(W12) + ∆(V11)W12 + V11∆(W12).

Comparing the above two identities, we get

(∆(U11 + V11)−∆(U11)−∆(V11))W12 = 0 .

In other words

(∆(U11 + V11)−∆(U11)−∆(V11))PAQ = 0 .

Since A is prime, it follows that

(∆(U11 + V11)−∆(U11)−∆(V11))P = 0 .

Hence, ∆(U11 +V11) = ∆(U11) + ∆(V11) as ∆(A11) ⊆ A11. Similarly, ∆ is additive
on A22. �

Lemma 17. ∆ is additive.

Proof. Let U =
∑2

i,j=1 Uij , V =
∑2

i,j=1 Vij be in A. By Lemmas, 13, 14 and 16,
we have

∆(U + V ) = ∆

( 2∑
i,j=1

(Uij + Vij)

)

=

2∑
i,j=1

∆(Uij + Vij) =

2∑
i,j=1

(
∆(Uij) + ∆(Vij)

)

= ∆
( 2∑
i,j=1

Uij

)
+ ∆

( 2∑
i,j=1

Vij

)
= ∆(U) + ∆(V ).

�
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In the sequel, we shall prove that ∆ is a derivation.

Lemma 18. Let Uii, Vii ∈ Aii, i = 1, 2. Then ∆(UiiVii) = ∆(Uii)Vii + Uii∆(Vii)

Proof. For any U11, V11 ∈ A11 and W12 ∈ A12, we have by Lemma 15 that

∆(U11V11W12) = ∆(U11V11)W12 + U11V11∆(W12) .

On the other hand we have,

∆(U11V11W12) = ∆(U11)V11W12 + U11∆(V11W12)

= ∆(U11)V11W12 + U11∆(V11)W12 + U11V11∆(W12).

Comparing the above two identities, we get(
∆(U11V11)−∆(U11)V11 − U11∆(V11)

)
W12 = 0 .

In other words (
∆(U11V11)−∆(U11)V11 − U11∆(V11)

)
PAQ = 0 .

Since A is prime, it follows that(
∆(U11V11)−∆(U11)V11 − U11∆(V11)

)
P = 0 .

Hence, ∆(U11V11) = ∆(U11)V11 + U11∆(V11) as ∆(A11) ⊆ A11. Similarly,

∆(U22V22) = ∆(U22)V22 + U22∆(V22) . �

Lemma 19. Let U11 ∈ A11 and V22 ∈ A22. Then

φ(U11 + V22)−∆(U11)−∆(V22) ∈ FI .

Proof. For any U11 ∈ A11 and V22 ∈ A22, we have

φ([[U11 + V22, Q], Q]) = [[φ(U11 + V22), Q], Q]

On the other hand, we have

φ
([

[U11 + V22, Q], Q
])

= φ
([

[U11, Q], Q
])

+ φ
([

[V22, Q], Q
])

=
[
[φ(U11), Q], Q

]
+
[
[φ(V22), Q], Q

]
=
[
[∆(U11) + f1(U11), Q], Q

]
+
[
[∆(V22) + f2(U22), Q], Q

]
=
[
[∆(U11), Q], Q

]
+
[
[∆(V22), Q], Q

]
.

On combining the above two identities, we get[
[φ(U11 + V22)−∆(U11)−∆(V22), Q], Q

]
= 0 ,
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that is

0 = P (φ(U11 + V22)−∆(U11)−∆(V22))Q

+Q(φ(U11 + V22)−∆(U11)−∆(V22))P. (5)

Now for any W12 ∈ A12, we have

φ([U11 + V22,W12]) = φ(U11W12 −W12V22)

= φ(U11W12)− φ(W12V22) = ∆(U11W12)−∆(W12V22)

= ∆
([

[U11,W12], Q
])
−∆

([
[W12, V22], Q

])
=
[
[∆(U11),W12], Q

]
+
[
[U11,∆(W12)], Q

]
−
[
[∆(W12), V22], Q

]
−
[
[W12,∆(V22)], Q

]
=
[
[∆(U11),W12], Q

]
+
[
U11,∆(W12)

]
+ [V22,∆(W12)] +

[
[∆(V22),W12], Q

]
.

On the other hand, we see that

φ
([
U11 + V22,W12

])
= φ

([
[U11 + V22,W12], Q

])
=
[
[φ(U11 + V22),W12], Q

]
+
[
[U11 + V22,∆(W12)], Q

]
=
[
[φ(U11 + V22),W12], Q

]
+
[
U11,∆(W12)

]
+
[
V22,∆(W12)

]
.

Comparing the above two identities, we obtain[
[φ(U11 + V22)−∆(U11)−∆(V22),W12], Q

]
= 0 .

In other words, we get

P
(
φ(U11 + V22)−∆(U11)−∆(V22)

)
W12

= W12

(
φ(U11 + V22)−∆(U11)−∆(V22)

)
Q. (6)

Equations (5) and (6), together with Lemma 3, yield that

φ(U11 + U22)−∆(U11)−∆(U22) ∈ FI . �

Lemma 20. Let U12 ∈ A12 and V21 ∈ A21. Then

∆(U12V21) = ∆(U12)V21 + U12∆(V21)

and
∆(U21V12) = ∆(U21)V12 + U21∆(V12) .

Proof. For any U12 ∈ A12 and V21 ∈ A21,compute

φ([U12, V21])−∆([U12, V21]) = φ([[P,U12], V21])−∆(U12V21 − V21U12)

=
[
[P, φ(U12)], V21

]
+
[
[P,U12], φ(V21)

]
−∆(U12V21) + ∆(V21U12)

= ∆(U12)V21 + U12∆(V21)−∆(U12V21)

−∆(V21)U12 − V21∆(U12) + ∆(V21U12).
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Since

φ([U12, V21])−∆([U12, V21]) = φ(U12V21 − V21U12)−∆(U12V21 − V21U12) ,

by Lemma 19, we have

∆(U12)V21 + U12∆(V21)−∆(U12V21)−∆(V21)U12 − V21∆(U12) + ∆(V21U12)

= λI ∈ FI.

From the later relation we obtain the two identities

∆(U12V21) = ∆(U12)V21 + U12∆(V21)− λP, (7)

and
∆(V21U12) = ∆(V21)U12 + V21∆(U12) + λQ. (8)

Now it is sufficient to show that λ = 0. Assume λ 6= 0. Then by using equations
(7) and (8) together with Lemma 15, we have

∆(U12V21U12) = ∆(U12)V21U12 + U12∆(V21U12)

= ∆(U12)V21U12 + U12∆(V21)U12 + U12V21∆(U12) + λU12,

and

∆(U12V21U12) = ∆(U12V21)U12 + U12V21∆(U12)

= ∆(U12)V21U12 + U12∆(V21)U12 + U12V21∆(U12)− λU12.

Comparing the above two identities, we obtain λU12 = 0. Since F is a field, we
have U12 = 0, a contradiction. Consequently,

∆(U12V21) = ∆(U12)V21 + U12∆(V21)

and
∆(U21V12) = ∆(U21)V12 + U21∆(V12) .

�

Thus, we have shown that ∆ is an additive derivation.

Proof of Theorem 1. Let us define τ : A → A by τ(U) = φ(U)−∆(U) for U ∈ A.
For i = j , τ(Uij) = fi(Uij)I; otherwise τ(Uij) = 0. We shall show that τ(U) ∈ FI
for all U ∈ A. For T12 ∈ A12 and U ∈ A. Since

[[U, T12], P ] = [UT12 − T12U,P ] = T12QUQ− PUPT12,

it follows

φ(T12QUQ− PUPT12) = φ
([

[U, T12
]
, P
]
)

=
[
[φ(U), T12

]
, P ] +

[
[U, φ(T12)], P

]
= φ(T12)QUQ− PUPφ(T12) + T12Qφ(U)Q− Pφ(U)PT12.
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On the other hand by Lemma 12, we have

φ(T12QUQ− PUPT12) = φ(T12QUQ)− φ(PUPT12)

= φ
([

[P, T12], QUQ
])
− φ

([
[T12, P ], PUP

])
=
[
[P, φ(T12)], QUQ

]
+
[
[P, T12], φ(QUQ)

]
−
[
[φ(T12), P ], PUP

]
−
[
[T12, P ], φ(PUP )

]
= φ(T12)QUQ+ T12φ(QUQ)− φ(QUQ)T12 − φ(PUP )T12

+ T12φ(PUP )− PUPφ(T12).

Comparing the above two identities, we obtain(
Pφ(U)P − φ(PUP )− φ(QUQ)

)
T12 = T12

(
Qφ(U)Q− φ(PUP )− φ(QUQ)

)
.

Hence for all T12 ∈ A12,(
Pφ(U)P −Qφ(U)Q− φ(PUP )− φ(QUQ)

)
T12

= T12
(
Qφ(U)Q+Qφ(U)Q− φ(PUP )− φ(QUQ)

)
By using the Lemma 3, we get the desired result.

Pφ(U)P +Qφ(U)Q− φ(PUP )− φ(QUQ) ∈ FI. (9)

Now by Lemmas 9 and 12, we have

Pφ(U)Q+Qφ(U)P = φ(PUQ+QUP ) = φ(PUQ) + φ(QUP ),

and hence

φ(U)− φ(PUP ) + φ(PUQ) + φ(QUP ) + φ(QUQ)

= Pφ(U)P +Qφ(U)Q+ Pφ(U)Q+Qφ(U)P

− φ(PUP )− φ(QUQ)− φ(PUQ)− φ(QUP )

= Pφ(U)P +Qφ(U)Q− φ(PUP )− φ(QUQ) ∈ FI.

By equation (9) and by the definition of ∆ and τ , we see that τ(U) ∈ FI for
all U ∈ A. Since ∆ is an additive Lie triple derivation, it follows that for all
U, V,W ∈ A

τ([[U, V ],W ]) = φ
([

[U, V ],W
])
−∆

([
[U, V ],W

])
=
[
[φ(U), V ],W

]
+
[
[U, φ(V )],W

]
+
[
[U, V ], φ(W )

]
−∆

([
[U, V ],W

])
=
[
[∆(U), V ],W

]
+
[
[U,∆(V )],W

]
+
[
[U, V ],∆(W )

]
−∆

([
[U, V ],W

])
= 0.

Finally, let us define ψ(U) = ∆(U) − (TU − UT ) for all U ∈ A, where T =
Pd(P )Q −Qd(P )P . It is easy to check that ψ is an additive derivation on A. By
the definitions of ∆ and φ, we have d(U) = ψ(U) + τ(U) for all U ∈ A.

Furthermore, if d is linear , then ψ and τ are also linear. As any linear derivation
on A is inner, then there exists an operator S ∈ A such that ψ(U) = SU − US for
all U ∈ A. Hence d(U) = SU − US + τ(U). This completes the proof. �
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