A Weighted Eigenvalue Problems Driven by both p(·)-Harmonic and p(·)-Biharmonic Operators - Archive ouverte HAL
Article Dans Une Revue Communications in Mathematics Année : 2021

A Weighted Eigenvalue Problems Driven by both p(·)-Harmonic and p(·)-Biharmonic Operators

Abdelouahed El Khalil
  • Fonction : Auteur
Abdelfattah Touzani
  • Fonction : Auteur

Résumé

The existence of at least one non-decreasing sequence of positive eigenvalues for the problem driven by both p(·)-Harmonic and p(·)-biharmonic operators Δp(x)2u-Δp(x)u=λw(x)|u|q(x)-2u   in  Ω,            u∈W2,p(⋅)(Ω)∩W0-1,p(⋅)(Ω), is proved by applying a local minimization and the theory of the generalized Lebesgue-Sobolev spaces Lp(·)(Ω) and Wm,p(·)(Ω).
Fichier principal
Vignette du fichier
10-2478-cm-2020-0011.pdf (339.19 Ko) Télécharger le fichier
Origine Accord explicite pour ce dépôt

Dates et versions

hal-03664984 , version 1 (11-05-2022)

Licence

Identifiants

Citer

Mohamed Laghzal, Abdelouahed El Khalil, Abdelfattah Touzani. A Weighted Eigenvalue Problems Driven by both p(·)-Harmonic and p(·)-Biharmonic Operators. Communications in Mathematics, 2021, Volume 29 (2021), Issue 3 (3), pp.443 - 455. ⟨10.2478/cm-2020-0011⟩. ⟨hal-03664984⟩
23 Consultations
368 Téléchargements

Altmetric

Partager

More