Time fractional Kupershmidt equation: symmetry analysis and explicit series solution with convergence analysis - Archive ouverte HAL
Article Dans Une Revue Communications in Mathematics Année : 2019

Time fractional Kupershmidt equation: symmetry analysis and explicit series solution with convergence analysis

Astha Chauhan
  • Fonction : Auteur correspondant
Rajan Arora
  • Fonction : Auteur

Résumé

In this work, the fractional Lie symmetry method is applied for symmetry analysis of time fractional Kupershmidt equation. Using the Lie symmetry method, the symmetry generators for time fractional Kupershmidt equation are obtained with Riemann-Liouville fractional derivative. With the help of symmetry generators, the fractional partial differential equation is reduced into the fractional ordinary differential equation using Erdélyi-Kober fractional differential operator. The conservation laws are determined for the time fractional Kupershmidt equation with the help of new conservation theorem and fractional Noether operators. The explicit analytic solutions of fractional Kupershmidt equation are obtained using the power series method. Also, the convergence of the power series solutions is discussed by using the implicit function theorem.
Fichier principal
Vignette du fichier
10-2478-cm-2019-0013.pdf (268.71 Ko) Télécharger le fichier
Origine Accord explicite pour ce dépôt

Dates et versions

hal-03664968 , version 1 (11-05-2022)

Licence

Identifiants

Citer

Astha Chauhan, Rajan Arora. Time fractional Kupershmidt equation: symmetry analysis and explicit series solution with convergence analysis. Communications in Mathematics, 2019, Volume 27 (2019), Issue 2 (2), pp.171 - 185. ⟨10.2478/cm-2019-0013⟩. ⟨hal-03664968⟩
18 Consultations
365 Téléchargements

Altmetric

Partager

More