Isometries of Riemannian and sub-Riemannian structures on three-dimensional Lie groups - Archive ouverte HAL
Article Dans Une Revue Communications in Mathematics Année : 2018

Isometries of Riemannian and sub-Riemannian structures on three-dimensional Lie groups

Rory Biggs
  • Fonction : Auteur correspondant

Résumé

We investigate the isometry groups of the left-invariant Riemannian and sub-Riemannian structures on simply connected three-dimensional Lie groups. More specifically, we determine the isometry group for each normalized structure and hence characterize for exactly which structures (and groups) the isotropy subgroup of the identity is contained in the group of automorphisms of the Lie group. It turns out (in both the Riemannian and sub-Riemannian cases) that for most structures any isometry is the composition of a left translation and a Lie group automorphism.
Fichier principal
Vignette du fichier
10-1515-cm-2017-0010.pdf (971.83 Ko) Télécharger le fichier
Origine Accord explicite pour ce dépôt

Dates et versions

hal-03664942 , version 1 (11-05-2022)

Licence

Identifiants

Citer

Rory Biggs. Isometries of Riemannian and sub-Riemannian structures on three-dimensional Lie groups. Communications in Mathematics, 2018, Volume 25 (2017), Issue 2 (2), pp.99 - 135. ⟨10.1515/cm-2017-0010⟩. ⟨hal-03664942⟩
12 Consultations
459 Téléchargements

Altmetric

Partager

More