Generalized Higher Derivations on Lie Ideals of Triangular Algebras
Résumé
Let be the triangular algebra consisting of unital algebras A and B over a commutative ring R with identity 1 and M be a unital (A; B)-bimodule. An additive subgroup L of A is said to be a Lie ideal of A if [L;A] ⊆ L. A non-central square closed Lie ideal L of A is known as an admissible Lie ideal. The main result of the present paper states that under certain restrictions on A, every generalized Jordan triple higher derivation of L into A is a generalized higher derivation of L into A.
Domaines
Mathématiques [math]Origine | Accord explicite pour ce dépôt |
---|