Generalized Higher Derivations on Lie Ideals of Triangular Algebras - Archive ouverte HAL
Article Dans Une Revue Communications in Mathematics Année : 2017

Generalized Higher Derivations on Lie Ideals of Triangular Algebras

Mohammad Ashraf
  • Fonction : Auteur correspondant
Nazia Parveen
  • Fonction : Auteur
Bilal Ahmad Wani
  • Fonction : Auteur

Résumé

Let be the triangular algebra consisting of unital algebras A and B over a commutative ring R with identity 1 and M be a unital (A; B)-bimodule. An additive subgroup L of A is said to be a Lie ideal of A if [L;A] ⊆ L. A non-central square closed Lie ideal L of A is known as an admissible Lie ideal. The main result of the present paper states that under certain restrictions on A, every generalized Jordan triple higher derivation of L into A is a generalized higher derivation of L into A.
Fichier principal
Vignette du fichier
10-1515-cm-2017-0005.pdf (276.19 Ko) Télécharger le fichier
Origine Accord explicite pour ce dépôt

Dates et versions

hal-03664936 , version 1 (11-05-2022)

Licence

Identifiants

Citer

Mohammad Ashraf, Nazia Parveen, Bilal Ahmad Wani. Generalized Higher Derivations on Lie Ideals of Triangular Algebras. Communications in Mathematics, 2017, Volume 25 (2017), Issue 1 (1), pp.35 - 53. ⟨10.1515/cm-2017-0005⟩. ⟨hal-03664936⟩
7 Consultations
267 Téléchargements

Altmetric

Partager

More