The normal contraction property for non-bilinear Dirichlet forms - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

The normal contraction property for non-bilinear Dirichlet forms

Ivailo Hartarsky
  • Fonction : Auteur
  • PersonId : 1134169

Résumé

We analyse the class of convex functionals E over L 2 (X, m) for a measure space (X, m) introduced by Cipriani and Grillo [17] and generalising the classic bilinear Dirichlet forms. We investigate whether such non-bilinear forms verify the normal contraction property, i.e., if E(φ • f) E(f) for all f ∈ L 2 (X, m), and all 1-Lipschitz functions φ : R → R with φ(0) = 0. We prove that normal contraction holds if and only if E is symmetric in the sense E(−f) = E(f), for all f ∈ L 2 (X, m). An auxiliary result, which may be of independent interest, states that it suffices to establish the normal contraction property only for a simple two-parameter family of functions φ.
Fichier principal
Vignette du fichier
2205.02928.pdf (248.12 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03663291 , version 1 (10-05-2022)

Identifiants

  • HAL Id : hal-03663291 , version 1

Citer

Giovanni Maria Brigati, Ivailo Hartarsky. The normal contraction property for non-bilinear Dirichlet forms. 2022. ⟨hal-03663291⟩
32 Consultations
54 Téléchargements

Partager

More