Susceptibility and Resilience to PTSD-Like Symptoms in Mice Are Associated with Opposite Dendritic Changes in the Prelimbic and Infralimbic Cortices Following Trauma
Résumé
Post-traumatic stress disorder (PTSD) is triggered by exposure to traumatic events, but not everyone who experiences trauma develops this disorder. Like humans, PTSD-like symptoms develop in some laboratory rodents (susceptible individuals), while others express less or no symptoms (resilient individuals). Here, considering (i) the putative causal role of fear conditioning in PTSD development and (ii) the involvement of the medial prefrontal cortex (mPFC) in the regulation of conditioned fear response, we tested whether trauma-associated changes in the mPFC may discriminate stress-resilient from stress-susceptible mice. From data on avoidance behavior (as a major symptom), we found that trauma-exposed mice displayed a bimodal distribution in their step-through latency, with low avoider (stressresilient) individuals and high avoider (stress-susceptible) individuals. Dendrites of Golgi-Cox-stained neurons were analyzed in two parts of the mPFC: the prelimbic (PrL) and infralimbic (IL) areas. In the resilient phenotype, the total number of dendrites decreased in the PrL and increased in the IL; however, it decreased only in the IL in the susceptible phenotype compared to controls. These findings demonstrate that the type of post-trauma morphological changes in the mPFC is associated with susceptibility or resilience to traumarelated symptoms.
Origine | Fichiers produits par l'(les) auteur(s) |
---|