Sharp asymptotics in a fractional Sturm-Liouville problem
Résumé
Abstract The current research of fractional Sturm-Liouville boundary value problems focuses on the qualitative theory and numerical methods, and much progress has been recently achieved in both directions. The objective of this paper is to explore a different route, namely, construction of explicit asymptotic approximations for the solutions. As a study case, we consider a problem with left and right Riemann-Liouville derivatives, for which our analysis yields asymptotically sharp estimates for the sequence of eigenvalues and eigenfunctions.