Quantitative Imaging of Exotic Antiferromagnetic Spin Cycloids in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml:msub><mml:mrow><mml:mi>Bi</mml:mi><mml:mi>Fe</mml:mi><mml:mi mathvariant="normal">O</mml:mi></mml:mrow><mml:mn>3</mml:mn></mml:msub></mml:math> Thin Films - Archive ouverte HAL
Journal Articles Physical Review Applied Year : 2022

Quantitative Imaging of Exotic Antiferromagnetic Spin Cycloids in BiFeO3 Thin Films

Abstract

BiFeO3 is a rich room-temperature multiferroic material in which noncollinear antiferromagnetic spin cycloids can be deterministically controlled by an electric field through the magnetoelectric interaction, opening perspectives for low-power reconfigurable antiferromagnetic spintronics. Using a commercial scanning nitrogen-vacancy (N-V) magnetometer, we are able to image two different types of spin cycloids stabilized in strain-engineered BiFeO3 epitaxial thin films. We show that, in these samples harboring two ferroelectric variants, each ferroelectric domain is coupled to a single spin cycloid, giving rise to a zigzag magnetic pattern. These ferroelectric domains can be manipulated at the local scale by piezoresponse force microscopy, allowing the design of micron-sized single domains. Thanks to its coupled optical microscope and fast-imaging capabilities, the scanning N-V magnetometer enables a quick repositioning in such areas of interest. Finally, quantitative imaging on single ferroelectric domains provides insights into the physical parameters of each spin-cycloid type and their impact on the magnetic-stray-field measurements.
Fichier principal
Vignette du fichier
Zhong_Phys Rev Appl_2022.pdf (5.14 Mo) Télécharger le fichier
Origin Publisher files allowed on an open archive

Dates and versions

hal-03656679 , version 1 (02-05-2022)

Identifiers

Cite

Hai Zhong, Aurore Finco, Johanna Fischer, Angela Haykal, Karim Bouzehouane, et al.. Quantitative Imaging of Exotic Antiferromagnetic Spin Cycloids in BiFeO3 Thin Films. Physical Review Applied, 2022, 17, ⟨10.1103/physrevapplied.17.044051⟩. ⟨hal-03656679⟩
86 View
137 Download

Altmetric

Share

More