Spectrum of the wave equation with Dirac damping on a non-compact star graph - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

Spectrum of the wave equation with Dirac damping on a non-compact star graph

Résumé

We consider the wave equation on non-compact star graphs, subject to a distributional damping defined through a Robin-type vertex condition with complex coupling. It is shown that the non-self-adjoint generator of the evolution problem admits an abrupt change in its spectral properties for a special coupling related to the number of graph edges. As an application, we show that the evolution problem is highly unstable for the critical couplings. The relationship with the Dirac equation in non-relativistic quantum mechanics is also mentioned.
Fichier principal
Vignette du fichier
krejcirik-royer.pdf (360.66 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03652993 , version 1 (27-04-2022)

Identifiants

  • HAL Id : hal-03652993 , version 1

Citer

David Krejcirik, Julien Royer. Spectrum of the wave equation with Dirac damping on a non-compact star graph. 2022. ⟨hal-03652993⟩
84 Consultations
97 Téléchargements

Partager

More