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SPECTRUM OF THE WAVE EQUATION WITH DIRAC DAMPING

ON A NON-COMPACT STAR GRAPH

DAVID KREJČIŘÍK AND JULIEN ROYER

Abstract. We consider the wave equation on non-compact star graphs, subject to a
distributional damping defined through a Robin-type vertex condition with complex
coupling. It is shown that the non-self-adjoint generator of the evolution problem
admits an abrupt change in its spectral properties for a special coupling related to
the number of graph edges. As an application, we show that the evolution problem is
highly unstable for the critical couplings. The relationship with the Dirac equation in
non-relativistic quantum mechanics is also mentioned.

1. Introduction

The primary motivation of this paper is the one-dimensional wave equation

ψtt ´ αδψt ´ ψxx “ 0 , (1.1)

where t ą 0 and x P R are the time and space variables, respectively, δ is the Dirac delta
function and α is a complex number. The distribution ´αδ models a highly localised
damping: dissipation or supply of energy if α is negative or positive, respectively, while
purely imaginary α admits a conservative, quantum-mechanical interpretation.

In the case of α real and the space variable x restricted to a bounded interval, say
p´π

2 ,
π
2 q, the model (1.1) was introduced in [7] in order to explain the playings of har-

monics on stringed instruments. By a detailed spectral analysis, the authors argue
that the optimal damping is α “ ´2. The problem has been more recently analysed
in [4, 2, 9] (see also [3, Sec. 4.1.1]). Qualitatively, spectral properties of (1.1) in the
bounded case are the expected ones: the spectrum is composed of isolated eigenvalues
of finite algebraic multiplicities. However, there is an abrupt change in basis properties
depending on whether |α| ­“ 2 or |α| “ 2. While the root vectors form a Riesz basis in
the former case, they are not even complete for the special values α “ ˘2.

The objective of the present paper is to point out that the peculiar spectral transition
is even more drastic in the unbounded situation considered here. Moreover, we allow
for α being an arbitrary complex number). If α P Czt˘2u, the spectrum coincides
with the imaginary axis iR, as in the damped-free case α “ 0. However, the spectrum
abruptly fills in the whole complex half-plane tz P C : ˘Repzq ě 0u as long as α “ ˘2.
This phenomenon was previously announced in [21, Rem. 1], but no rigorous analysis
was provided. Wild spectral properties for the damped wave equation with different
unbounded dampings have been recently observed in [14, 12].

What is more, we give an insight into the appearance of the “magical” values ˘2 by
considering (1.1) in the more general situation of non-compact star graphs with N ě 1
edges. The real line R can be considered as the star graph with two edges, while the
case N “ 1 corresponds to the wave equation on the half-line with damping at the
boundary. It turns out that the abrupt change in spectral properties happens precisely
for α “ ˘N .

The Laplacian on metric graphs with non-self-adjoint coupling conditions at the ver-
tices has been recently analysed in [19, 24, 20]. The damped wave equation on metric
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graphs is considered in [1, 13], however, just self-adjoint coupling conditions at the ver-
tices (and finite edges) are considered. See also [6] for an unbounded network with
Dirichlet and Kirchhoff conditions. The present paper therefore opens a new direction
of mathematically interesting and physically relevant research.

The organisation of this paper is as follows. In Section 2 we introduce our general
model and formulate the main results. The preliminary Section 3 collects basic proper-
ties of the wave operator. In Section 4 we show that the Dirac damping can be realised
as a limit of properly scaled regular dampings, in a norm-resolvent sense. The proofs of
more involved spectral and evolution results are given in Sections 5 and 6, respectively.
In the concluding Section 7, we provide a relationship between the damped wave equa-
tion and the Dirac equation in relativistic quantum mechanics, in order to motivate the
present setting of unbounded geometries and non-real dampings.

2. Our model and main results

2.1. The damped wave equation and the wave operator. LetN P N˚ “ t1, 2, . . . u.
We set N “ t1, . . . , Nu. We consider a metric graph Γ given by N edges of infinite length
linked together at a central vertex. Concretely, Γ consists of N copies of the open half-
line R˚` “s0,`8r and the link between the edges will be encoded in the domain of our
operator (see (2.5) below).

We set

L2pΓq “ L2pR˚`qN .
It is endowed with its natural Hilbert structure. For k P N˚ we similarly define

9HkpΓ˚q “ 9HkpR˚`qN , HkpΓ˚q “ HkpR˚`qN ,

and for u “ pujqjPN P 9HkpΓ˚q we write upkq for pu
pkq
j qjPN . In the sequel, when we

consider a function u on Γ » pR˚`qN it will be implicitly understood that we denote by
pujqjPN its components.

We say that u P 9H1pΓ˚q is continuous at 0 if

@j, k P N , ujp0q “ ukp0q.

In this case we denote by up0q the common value of ujp0q, j P N . We set

9H1pΓq “
!

u P 9H1pΓ˚q : u is continuous at 0
)

.

To define the natural Hilbert structure, we have to take the quotient of 9H1pΓq by

constant functions. We denote by H̃1pΓq this quotient. Then H̃1pΓq is a Hilbert space
for the inner product defined by

@u, v P H̃1pΓq, xu, vyH̃1pΓq “
@

u1, v1
D

L2pΓq
“

N
ÿ

j“1

@

u1j , v
1
j

D

L2pR˚
`q
.

Throughout the paper we will identify a function in 9H1pΓq and its equivalence class

in H̃1pΓq. This implicitly means that the results should be invariant by addition of a

constant to the functions in 9H1pΓq.
We consider the damped wave equation on Γ with damping at the central vertex.

Let I be an interval of R which contains 0. We introduce the problem

Bttujpt, xq ´ Bxxujpt, xq “ 0, @j P N ,@t P I,@x ě 0 (2.1)

with the continuity at the vertex

ujpt, 0q “ ukpt, 0q, @j, k P N ,@t P I (2.2)
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(this also implies the continuity at the vertex for Btu) and the damping condition

N
ÿ

j“1

Bxujpt, 0q ` αBtupt, 0q “ 0, @t P I, (2.3)

where α P C. The Cauchy problem is completed by the initial conditions

puj , Btujq|t“0 “ pfj , gjq, @j P N , (2.4)

where f P 9H1pΓq and g P L2pΓq.
More precisely, a (strong) solution of (2.1)–(2.4) is a continuous function u : I Ñ

H̃1pΓq X 9H2pΓ˚q with continuous derivative Btu : I Ñ H1pΓq and continuous second
derivative Bttu : I Ñ L2pΓq, such that (2.1) holds in L2pΓq for all t P I, with (2.2)–(2.3)

for all t P I, and with (2.4) in H̃1pΓq ˆ L2pΓq.

We set H “ H̃1pΓq ˆ L2pΓq and

DompWαq “

#

U “ pu, vq P
`

H̃1pΓq X 9H2pΓ˚q
˘

ˆH1pΓq :
N
ÿ

j“1

u1jp0q ` αvp0q “ 0

+

.

(2.5)
Then we define the unbounded operator Wα in the Hilbert space H by

@U “ pu, vq P DompWαq, Wα

ˆ

u
v

˙

“

ˆ

v
u2

˙

. (2.6)

We endow DompWαq with the graph norm:

}U}2DompWαq
“ }WαU}

2
H ` }U}2H , @U P DompWαq.

Then we see that u is a solution of (2.1)–(2.4) on I if and only if U “ pu, Btuq belongs
to C1pR`,H q X C0pR`,DompWqq and satisfies

#

U 1ptq “WUptq, @t P I,

Up0q “ pf, gq.
(2.7)

Our purpose in this paper is to describe the spectrum of the operator Wα and the
behaviour of the evolution problem (2.1)–(2.4) (or equivalently (2.7)). The first step
is to check that Wα is closed with non-empty resolvent set. In Section 3 we prove the
following more precise result.

Theorem 2.1. The operator Wα is maximal accretive (respectively maximal dissipative,
respectively skew-adjoint) if Repαq ě 0 (respectively Repαq ď 0, respectively Repαq “ 0).

An alternative approach, based on the dominant Schur complement, to introduce the
wave operator with possibly highly irregular dampings (possibly distributions) has been
recently developed by Gerhat [15].

2.2. The Robin vertex condition. The definition of DompWαq contains continuity
at 0 for u and v, and the additional condition will be referred to as the Robin condition.

Notice that for N “ 1, the graph Γ reduces to the half-line s0,`8r and in this case we
recover the usual Robin condition u1p0q ` αvp0q “ 0 at the boundary. When N “ 2 we
can identify the two edges with s0,`8r and s´8, 0r (by considering the transformation
x ÞÑ u2p´xq on s´8, 0r), so Γ is identified with R and in this setting the Robin condition
yields the usual jump condition u1p0`q ´ u1p0´q “ ´αvp0q.

Notice also that the two extreme situations α “ 0 and α “ 8 correspond, respectively,
to Neumann (or Kirchhoff) and Dirichlet boundary conditions imposed at the central
vertex.
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The motivation for considering the vertex condition (2.3) for our wave equation is
that it corresponds to a singular damping localised at the vertex. Formally, (2.1) and
(2.3) mean

Bttu´ Bxxu´ αδBtu “ 0,

where δ is a generalisation of the Dirac distribution on Γ. Similarly, for the corresponding
wave operator we can formally write

Wα

ˆ

u
v

˙

“

ˆ

v
u2 ` αδ

˙

.

This interpretation is supported by writing the quadratic form associated to the op-
erator Wα defined by (2.5)–(2.6). Indeed, for U “ pu, vq P DompWαq we have

xWαU,UyH “ xv1, u1yL2pΓq ` xu
2, vyL2pΓq “ 2iImxv1, u1yL2pΓq ` α |vp0q|

2 . (2.8)

To go further, we compare our operator Wα with an operator with a damping on the
edges localised near the vertex.

For j P N we consider ρj P L
1pR˚`,R`q such that

ş`8

0

?
xρjpxq dx ă `8. We assume

that
řN
j“1

ş`8

0 ρjpxq dx “ 1. For n P N˚ and j P N we set ρnj pxq “ nρjpxnq. Then we

set ρn “ pρnj q1ďjďN .
For n P N˚ we consider on H the operator

Wα,n “

ˆ

0 1
B2 αρn

˙

,

defined on the domain

DompWα,nq “

#

U “ pu, vq P
`

H̃1pΓq X 9H2pΓ˚q
˘

ˆH1pΓq :
N
ÿ

j“1

u1jp0q “ 0

+

.

A result similar to Theorem 2.1 holds for Wα,n (see Proposition 3.7 below). In particular,
setting

C˘ “ tz P C : ˘Repzq ą 0u ,

we deduce that if α P C˘ then for z P C¯ we have z P ρpWαq. In Section 4 we show
that Wα is the limit of Wα,n in the sense of the norm of the resolvent.

Theorem 2.2. Let α P C˘ and z P C¯. Then
›

›pWα ´ zq
´1 ´ pWα,n ´ zq

´1
›

›

LpH q
ÝÝÝÝÑ
nÑ`8

0.

2.3. Spectral properties of the wave operator. Having shown that Wα is a well
defined operator and a suitable model for the damped wave equation with damping at
the central vertex, we can now turn to its spectral properties.

We first notice that, as a consequence of Theorem 2.1, if α P C˘ then C¯ Ă ρpWαq

and for z P C¯ we have
›

›pWα ´ zq
´1
›

›

LpH q
ď

1

¯Repzq
.

The main result of this paper is related to spectral properties on the other half-plane.
There is no general theory for resolvent estimates inside the numerical range, but explicit
computations provide a precise description of the spectrum and the resolvent for this
particular problem.

Theorem 2.3. The spectrum of Wα is
$

’

&

’

%

iR if α P Czt˘Nu,
C` if α “ N,

C´ if α “ ´N.

Moreover,
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(i) iR contains no eigenvalue nor residual spectrum of Wα,
(ii) if α “ ˘N then any z P C˘ is an eigenvalue of Wα of geometric multiplicity 1 and

infinite algebraic multiplicity,
(iii) there exist c0, C ą 0 such that for α P C˘z t˘Nu and z P C˘ we have

max

ˆ

1

|Repzq|
,

c0

|z| |α¯N |

˙

ď
›

›pWα ´ zq
´1
›

›

LpH q
ď

C

|Repzq|

ˆ

1`
1

|α¯N |

˙

.

2.4. The damped wave equation. Finally we go back to the time-dependant problem
(2.1)–(2.4), or equivalently (2.7). If Repαq ď 0, the operator Wα generates by Theo-
rem 2.1 a contractions semigroup, so the problem (2.7) is well posed on R`. Moreover
the energy

Epu; tq “ }Btuptq}
2
L2pΓq ` }Bxuptq}

2
L2pΓq

of the solution u is non-increasing.
In this paragraph we address the question of well-posedness and growth of the energy

for (2.7) (or equivalently for (2.1)–(2.4)) when Repαq ą 0. We have similar results for
negative times when Repαq ă 0.

Theorem 2.4. Let α P C` and pf, gq P DompWαq.

(i) Assume that α ‰ N . The problem (2.1)–(2.4) has a unique solution u on R`.
Moreover there exists C ą 0 independent of α and pf, gq such that for t ě 0 we
have

Epu; tq ď C

ˆ

1`
1

|α´N |2

˙

Epu; 0q. (2.9)

(ii) Assume that α “ N . Let

t0 “ sup

#

t ě 0 :
N
ÿ

j“1

`

f 1jpsq ` gjpsq
˘

“ 0,@s P r0, ts

+

P r0,`8s.

If t0 ą 0 then (2.1)–(2.4) has an infinite number of solutions on r0, t0r. In partic-
ular there exists a solution u such that

Epu; tq ÝÝÝÑ
tÑt0

`8.

If t0 is finite then for any ε ą 0 the problem (2.1)–(2.4) has no solution on r0, t0`εr.

3. General properties of the wave operator

In this section we prove some basic properties for the wave operator Wα. In particular,
we give an expression for its resolvent with the spectral parameter lying in the suitable
half-place (depending on the sign of Repαq) and deduce that Wα is maximal accretive
and/or maximal dissipative (Theorem 2.1). Notice that our proofs are quite robust and
could be applied for the wave equation on more general graphs.

To prepare the proof of Theorem 2.2 in the next section, we proceed with the same
analysis for Wα,n, n P N˚.

We first record the following direct consequence of formula (2.8).

Proposition 3.1. The operator Wα is accretive (respectively dissipative, respectively
skew-symmetric) if Repαq ě 0 (respectively Repαq ď 0, respectively Repαq “ 0). In
particular, if α P C˘ and z P C¯ then pWα ´ zq is injective with closed range. For
n P N˚ the operator Wα,n has the same properties.

Next we mention the following symmetry result.

Proposition 3.2. For α P C we have W˚
α “ ´W´ᾱ.
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Proof. For U P DompWaq and Ũ P DompW´ᾱq we can check by direct computation that
@

WαU, Ũ
D

H
“ ´

@

U,W´ᾱŨ
D

H
.

This proves that DompW´ᾱq Ă DompW˚
αq and that W˚

α “ ´W´ᾱ on DompW´ᾱq.

Now let Ũ “ pũ, ṽq P DompW˚
αq and F “ pf, gq “ W˚

αŨ P H . For all U “ pu, vq P

DompWαq we have
@

WαU, Ũ
D

H
“ xU,F yH , which gives

@

v1, ũ1
D

L2pΓq
`
@

u2, ṽ
D

L2pΓq
“

@

u1, f 1
D

L2pΓq
` xv, gyL2pΓq . (3.1)

Let j P N . Applied with u “ 0, vj P C80 pR˚`q and vk “ 0 for k ‰ j, this proves
that ũ1j P H

1pR˚`q and ũ2j “ ´gj . Applied with v “ 0, uj P C
8
0 pR˚`q and uk “ 0 for

k ‰ j, we deduce that there exists a constant βj such that ṽ1j “ ´f
1
j ` βj in the sense

of distributions. Since f 1j and ṽj are in L2pR˚`q, we necessarily have βj “ 0, so ṽ1j “ f 1j
belongs to L2pR˚`q.

We can rewrite (3.1) as
@

u1, f 1
D

L2pΓq
` xv, gyL2pΓq

“ ´
@

v, ũ2
D

L2pΓq
´ vp0q

N
ÿ

j“1

ũ1jp0q ´
@

u1, ṽ1
D

L2pΓq
´

N
ÿ

j“1

u1jp0qṽp0q.

This gives

´vp0q
N
ÿ

j“1

ũ1jp0q ` αvp0qṽp0q “ 0,

which implies that
řN
j“1 ũ

1
jp0q ´ ᾱṽp0q “ 0. Then DompWαq Ă DompW´ᾱq, and the

proof is complete. �

In Proposition 3.6 below, we will give an expression for the resolvent of Wα valid in
H1pΓq ˆ L2pΓq. This is a dense subset of H by the following classical lemma.

Lemma 3.3. H1pΓq is dense in 9H1pΓq.

Proof. Let u “ pujqjPN P 9H1pΓq. Let j P N . Let χ P C8pR`, r0, 1sq be equal to 1 on
r0, 1s and equal to 0 on r2,`8r. For R ě 1 and x ě 0 we set χRpxq “ χ

`

x
R

˘

. We have
›

›pp1´ χRqujq
1
›

›

L2pR˚
`q
ď

›

›p1´ χRqu
1
j

›

›

L2pR˚
`q
`
›

›χ1Ruj
›

›

L2pR˚
`q
.

The first term goes to 0 as RÑ8 by the dominated convergence theorem. We estimate
the second term. Let ε ą 0. There exists Cj ą 0 such that for all x ě 1 we have

|ujpxq| ď Cj
?
x. Let x0 ą 0 be so large that 2

?
2Cj }u

1}L2px0,8q
ď ε, and let R ě 1 be

so large that |upx0q|
2
ď εR

2 . Then for x ě maxpx0, Rq we have

|ujpxq|
2
L2pR˚

`q
ď |ujpx0q|

2
` 2

ż x

x0

|ujpsq|
ˇ

ˇu1jpsq
ˇ

ˇ ds

ď |ujpx0q|
2
`
?

2Cjx
›

›u1j
›

›

L2px0,8q
ď εx,

so

›

›χ1Ruj
›

›

2
ď
}χ1}28
R2

ż 2R

R
|ujpxq|

2 dx ď 2ε
›

›χ1
›

›

2

8
.

The conclusion follows. �

We denote by H´1pΓq the space of continuous semilinear forms on H1pΓq (we have
`pϕ1` βϕ2q “ `pϕ1q ` β̄`pϕ2q for ` P H´1pΓq, ϕ1, ϕ2 P H

1pΓq and β P C). In particular,

δ : φ ÞÑ φp0q belongs to H´1pΓq. We refer to [11, pp. 3–4] for a discussion about this
choice.
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For α P C, z P C and n P N˚ we define bounded operators Qαpzq and Qα,npzq in
LpH1pΓq, H´1pΓqq by

xQαpzqψ,ϕyH´1pΓq,H1pΓq “
@

ψ1, ϕ1
D

L2pΓq
´ αzψp0qϕp0q ` z2 xψ,ϕyL2pΓq

and

xQα,npzqψ,ϕyH´1pΓq,H1pΓq “
@

ψ1, ϕ1
D

L2pΓq
´ αz xρnψ,ϕyL2pΓq ` z

2 xψ,ϕyL2pΓq ,

for all ψ,ϕ P H1pΓq (the scalar products are linear on the left and semilinear on the
right).

Proposition 3.4. Let α P C˘, z P C¯ and n P N˚. Then Qαpzq and Qα,npzq are
invertible. Moreover, the norm

›

›Qα,npzq
´1
›

›

LpH´1pΓq,H1pΓqq
is bounded uniformly in n P

N˚.

Proof. We consider the case Repαq ě 0 and Repzq ă 0 (the case Repαq ď 0 and Repzq ą 0
is similar). Let θ “ argpzq ´ π P

‰

´ π
2 ,

π
2

“

and η “ argpαq P
“

´ π
2 ,

π
2

‰

. For w P H1pΓq
we have

Re
`

e´iθ xQα,npzqw,wyH´1pΓq,H1pΓq

˘

“ cospθq
›

›w1
›

›

2

L2pΓq
` cospηq |αz| xρnw,wyL2pΓq ` cospθq |z|2 }w}2L2pΓq

ě minp1, |z|2q cospθq }w}2H1pΓq .

By the Lax–Milgram Theorem, Qn,αpzq is invertible and
›

›Qα,npzq
´1
›

›

LpH´1pΓq,H1pΓqq
is

uniformly bounded in n P N˚. We proceed similarly for Qαpzq. �

We set Rαpzq “ Qαpzq
´1 and Rα,npzq “ Qα,npzq

´1.

Proposition 3.5. Let α P C˘, z P C¯ and n P N˚. Let h P L2pΩq and κ P C.

(i) Let w “ Rαpzqph`κδq P H
1pΓq. Then for j P N we have w2j “ z2wj´hj P L

2pR˚`q,
and moreover

N
ÿ

j“1

w1jp0q ` αwp0q “ ´κ. (3.2)

(ii) Let w “ Rα,npzqph` κρnq P H1pΓq. Then
ř

jPN w1p0q “ 0 and for j P N we have

w2j “ ´αzρ
nw ` z2wj ´ hj ´ κρ

n P L2pR˚`q.

Proof. Since h ` κδ P H´1pΓq, w is well defined as an element of H1pΓq by Proposi-
tion 3.4. For all φ P H1pΓq we have

@

w1, φ1
D

L2pΓq
´ αzwp0qφp0q ` z2 xw, φyL2pΓq “ xh, φyL2pΓq ` κφp0q. (3.3)

As in the proof of Proposition 3.2, by choosing φ supported away from the vertex we
see that for all j P N we have in the sense of distributions w2j “ z2wj´hj . In particular

wj P H
2pR˚`q. Then, after integrations by parts in (3.3) we get

´

N
ÿ

j“1

w1jp0qφp0q ´ zαwp0qφp0q “ κφp0q.

This gives (3.2). The second statement is similar. �

We define B2 P Lp 9H1pΓq, H´1pΓqq by
@

B2ψ,ϕ
D

H´1pΓq,H1pΓq
“ ´xψ1, ϕ1yL2pΓq for all

ψ,ϕ P H1pΓq. In particular we have Qαpzq “ ´B
2 ´ αzδ ` z2.
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Proposition 3.6. Let α P C˘ and z P C¯. We have z P ρpWαq and

pWα ´ zq
´1 “

ˆ

´z´1
`

RαpzqB
2 ` 1

˘

´Rαpzq
´RαpzqB

2 ´zRαpzq

˙

. (3.4)

Moreover, for F “ H1pΓq ˆ L2pΓq we also have

pWα ´ zq
´1F “

ˆ

Rαpzqpαδ ´ zq ´Rαpzq
1`Rαpzqpzαδ ´ z

2q ´zRαpzq

˙

F. (3.5)

For n P N˚ have the same results with Wα, Rαpzq and δ replaced by Wα,n, Rα,npzq
and ρn.

Proof. For F P H1pΓq ˆ L2pΓq we denote by RαpzqF the right-hand side of (3.5). We
set F “ pf, gq and U “ RαpzqF “ pu, vq. We have u, v P H1pΓq. By Proposition 3.5,
we have u2j P L

2pR˚`q, u2j “ z2u` zf ` g and vj “ fj ` zuj for all j P N . On the other
hand we have at the vertex:

N
ÿ

j“1

u1jp0q ` αzup0q “ ´αfp0q.

This gives the Robin condition. All this proves that U P DompWαq and pWα´zqU “ F .
In particular pWα ´ zq has dense range. Since pWα ´ zq is injective with closed range
by Proposition 3.1, z belongs to ρpWαq and pWα ´ zq

´1 “ Rαpzq on H1pΓq ˆ L2pΓq.

Now we denote by R̃αpzq the right-hand side of (3.4). From the properties of Rαpzq

we see that R̃αpzq defines a bounded operator on H . Moreover, for F P H1pΓq ˆL2pΓq

we have R̃αpzqF “ RαpzqF “ pWα ´ zq´1F . Since H1pΓq ˆ L2pΓq is dense in H , this

proves that R̃αpzq “ pWα ´ zq
´1.

The proof for Wα,n is similar. We omit the details. �

With Proposition 3.6 we can complete the statement of Proposition 3.1. This gives
in particular Theorem 2.1.

Proposition 3.7. The operator Wα is maximal accretive (respectively maximal dis-
sipative, respectively skew-adjoint) if Repαq ě 0 (respectively Repαq ď 0, respectively
Repαq “ 0). For n P N˚ the operator Wα,n has the same properties.

4. Damping at the vertex as a limit model for damping on the edges

In this section we establish Theorem 2.2. We first check that the sequence pρnqnPN˚

is an approximation of the Dirac distribution.

Lemma 4.1. We have

}ρn ´ δ}LpH1pΓq,H´1pΓqq ÝÝÝÝÑnÑ`8
0.

Proof. Let u,w P H1pΓq. For n P N˚ we have

xpρn ´ δqu,wyH´1pΓq,H1pΓq “

N
ÿ

j“0

ż `8

0
ρnj pxq

`

ujpxqwjpxq ´ up0qwp0q
˘

dx.

For j P N we have
ż `8

0
ρnj pxq |pujwjqpxq ´ puwqp0q| dx ď

ż `8

0
ρnj pxq

ˇ

ˇ

ˇ

ˇ

ż x

0
pujwjq

1psq ds

ˇ

ˇ

ˇ

ˇ

dx

ď

ż `8

0
ρnj pxq

?
x
›

›pujwjq
1
›

›

L2pR˚
`q
dx

ď
}pujwjq

1}L2pR˚
`q

?
n

ż `8

0
ρjpyq

?
y dy.
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Then there exists c ą 0 such that for all n P N˚ and u,w P H1pΓq we have
ˇ

ˇ

ˇ
xpρn ´ δqu,wyH´1pΓq,H1pΓq

ˇ

ˇ

ˇ
ď

c
?
n
}u}H1pΓq }w}H1pΓq .

This concludes the proof of the lemma. �

Proposition 4.2. Let α P C˘ and z P C¯. We have

}Rαpzq ´Rα,npzq}LpH´1pΓq,H1pΓq ÝÝÝÝÑnÑ`8
0.

Proof. The resolvent identity gives

Rαpzq ´Rα,npzq “ zRαpzq
`

αδ ´ αρn
˘

Rα,npzq.

Since the size of Rα,npzq in LpH´1pΓq, H1pΓqq does not depend on n P N˚ (recall Propo-
sition 3.5), we conclude with help of Lemma 4.1. �

Now we are in a position to establish Theorem 2.2.

Proof of Theorem 2.2. For F P H1pΓq ˆ L2pΓq we have
›

›

`

pWα ´ zq
´1 ´ pWα,n ´ zq

´1
˘

F
›

›

H

À }Rα,npzq ´Rαpzq}LpH´1pΓq,H1pΓqq

` ›

›f2
›

›

H´1pΓq
` }g}L2pΓq

˘

À }Rα,npzq ´Rαpzq}LpH´1pΓq,H1pΓqq }F }H .

Here the relation f À g means that there exists a constant C (independent of n) such
that f ď Cg. By density of H1pΓq ˆ L2pΓq in H we get

›

›pWα ´ zq
´1 ´ pWα,n ´ zq

´1
›

›

LpH q
À }Rα,npzq ´Rαpzq}LpH´1pΓq,H1pΓqq ,

and we conclude with Proposition 4.2. �

5. Spectrum of the wave operator

In this section we prove Theorem 2.3. By Proposition 3.2 it is enough to consider the
case Repαq ě 0. In this case, we already know by Proposition 3.6 that C´ Ă ρpWαq.
We use explicit computation to describe the spectrum on the right half-plane. Then
Theorem 2.3 follows from Propositions 5.1, 5.2, 5.3 and 5.5 below.

Given a closed operator W in a Hilbert space H , we denote its point spectrum (i.e. the
set of eigenvalues W) by σppWq. One says that λ P σpWq belongs to the continuous
spectrum σcpWq (respectively, residual spectrum σrpWq) of W if λ R σppWq and the
closure of the range of the shifted operator W ´ λ equals H (respectively, the closure
is a proper subset of H ).

We first consider the spectrum on the imaginary axis.

Proposition 5.1. Let α P C. Then iR Ă σcpWαq.

Proof. Let θ P R. Let φ P C80 pR˚`q be supported in [1,2] and such that }φ}L2pR˚
`q
“ 1.

For n P N˚ we define un “ pun,jqjPN by

un,1pxq “
eiθx
?
n
φ
´x

n

¯

, un,jpxq “ 0, j P t2, . . . , Nu, x ą 0.

Then we set Un “ pun, iθunq P DompWαq. For n P N˚ we have }u1n}L2pΓq “ |θ| `Opn
´1q,

}iθun}L2pΓq “ |θ| and
›

›u2n ` θ
2un

›

›

L2pΓq
“ Opn´1q, so

}Un}
2
H “ 2θ2 `Opn´1q and }pWα ´ iθqUn}

2
H “

›

›u2n ` θ
2un

›

›

2

L2pRq “ Opn´2q.

This proves that iθ P σpWαq.
Now let U “ pu, vq P DompWαq such that WαU “ iθU . That is, v “ iθu and

u2j “ ´θ
2uj on R` for all j P N . Since uj P 9H1pR`q, this implies that uj “ 0. Then

U “ 0, so iθ cannot be an eigenvalue of Wα.
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Finally, assume that iθ P σrpWαq. Then ´iθ P σppW˚
αq. By Proposition 3.2, iθ P

σppW´ᾱq. However, the existence of eigenvalues on the entire imaginary axis has been
already excluded. �

Next we show that in the particular case α “ N the right-half plane is filled with
eigenvalues.

Proposition 5.2. Any z P C` is an eigenvalue of WN with geometric multiplicity 1
and infinite algebraic multiplicity.

Proof. Let z P C`. Assume that U “ pu, vq P DompWN q is such that WNU “ zU . Then
v “ zu and u2 “ zv “ z2u. Let j P N . Since uj P L

2pR˚`q, there exists Aj P C such that
ujpxq “ Aje

´zx. By continuity at 0, the coefficients Aj for j P N are all equal. Thus U
is proportional to the vector U1 “ pu1, v1q defined by

#

u1,jpxq “ e´zx,

v1,jpxq “ ze´zx.

Notice in particular that U1 is radial (the expressions above do not depend on j P N ).
Conversely, we can check that the vector U1 defined in this way belongs to DompWN q and
is an eigenvector corresponding to the eigenvalue z. This proves that z is a geometrically
simple eigenvalue of WN .

For n ě 2 we define un by

un,jpxq “
p´1qn´1xn´1

pn´ 1q!
e´zx, j P N , x ą 0.

At the same time, we define vn by

vn “ zun ` un´1.

It is straightforward to check that for all n ě 2 we have Un “ pun, vnq P DompWN q and
WNUn “ zUn`Un´1. This proves that z has algebraic multiplicity `8 as an eigenvalue
of WN . �

The precedent proposition establishes part (ii) of Theorem 2.3. The other part that
for α P C`ztNu there is no spectrum in the right-half plane will be proved in a moment.
First, however, let us argue that even if there is no spectrum, the pseudospectra are
highly non-trivial there and actually explode as αÑ N . This is quantified by obtaining
the following resolvent estimate.

Proposition 5.3. There exists c0 ą 0 such that for α P C`ztNu and z P C` X ρpWαq

we have
›

›pWα ´ zq
´1
›

›

LpH q
ě max

ˆ

1

Repzq
,

c0

|z| |N ´ α|

˙

.

Proof. For j P N and x ą 0 we set ηpxq “ e´
αzx
N . Then we define U “ pu, vq by uj “ η

and vj “ zη for all j P N . We have U P DompWαq,

}U}2H “ N

˜

|α|2

N2
` 1

¸

|z|2 }η}2L2pR˚
`q

and

}pWα ´ zqU}
2
H “ N

ˇ

ˇ

ˇ

ˇ

α2

N2
´ 1

ˇ

ˇ

ˇ

ˇ

2

|z|4 }η}2L2pR˚
`q
,

so

}pWα ´ zqU}
2
H ď |z|2 |α´N |2

|α`N |2

N2p|α|2 `N2q
}U}2H .
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This proves that

›

›pWα ´ zq
´1
›

›

LpH q
ě

c0

|z| |α´N |
, with c0 “ inf

αPC`

N

b

|α|2 `N2

|α`N |
ą 0.

On the other hand we also have
›

›pWα ´ zq
´1
›

›

LpH q
ě

1

distpz, σpWαqq
ě

1

Repzq
,

and the conclusion follows. �

To show that for α P C`ztNu there is no spectrum in the right-half plane, we compute
explicitely the resolvent of Wα. This will also give the upper bound for the norm of the
resolvent.

For z P C` and y P R we set

ρzpyq “
ze´z|y|

2
. (5.1)

Notice that ρzpyq “ ´z
2Gzpyq, where Gz is the Green function for the Helmholtz equa-

tion in dimension 1. On a half-line (hence on a star graph), the solution of the Helmholtz
equation is also given by convolution with Gz or ρz.

Let h : r0,`8rÑ C and x ě 0. When this makes sense we set

pρz ˚ hqpxq “

ż `8

0
ρzpx´ sqhpsq ds. (5.2)

We will use the following properties on this convolution product.

Lemma 5.4. Let z P C`.

(i) The convolution pρz ˚hqpxq is well defined for h in L2pR˚`q or h P 9H1pR˚`q and any
x ě 0.

(ii) For h P L2pR˚`q we have pρz ˚ hq P L
2pR˚`q and

}ρz ˚ h}L2pR˚
`q
ď

|z|

Repzq
}h}L2pR˚

`q
. (5.3)

(iii) For h in L2pR˚`q or 9H1pR˚`q the convolution pρz ˚ hq belongs to 9H1pR˚`q and for
almost all x ą 0 we have

pρz ˚ hq
1pxq “ zpρz ˚ hqpxq ´ z

2

ż x

0
e´zpx´sqhpsq ds. (5.4)

For h P 9H1pR`q this also gives

pρz ˚ hqpxq “
1

z
pρz ˚ h

1qpxq ´

ż x

0
e´zpx´sqh1psq ds` hpxq ´

e´zxhp0q

2

and

pρz ˚ hq
1pxq “ pρ ˚ h1qpxq `

z

2
e´zxhp0q.

(iv) For h P L2pR˚`q we have

|pρz ˚ hqp0q| ď
|z|

2
a

2Repzq
}h}L2pR˚

`q
.

Proof. Since ρz decays exponentially, the integral (5.2) is well defined for h P L2pR˚`q or

h P 9H1pR`q (in this case hpsq grows at most like
?
s), and for any x ě 0.

If h P L2pR˚`q we extend h by 0 on s´8, 0r to define a function h̃ on R. Then pρz ˚hq

is the restriction to r0,`8r of the usual convolution pρz ˚ h̃q on R, and

}ρz ˚ h}L2pR˚
`q
ď }ρz ˚ h̃}L2pRq ď }ρ}L1pRq }h̃}L2pRq “

|z|

Repzq
}h}L2pR˚

`q
.
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The third statement is straightforward computation and the last property follows
from the Cauchy–Schwarz inequality

|pρz ˚ hqp0q| “

ˇ

ˇ

ˇ

ˇ

ż `8

0
ρzp´sqhpsq ds

ˇ

ˇ

ˇ

ˇ

ď }ρz}L2pR´q
}h}L2pR˚

`q
“

|z|

2
a

2Repzq
}h}L2pR˚

`q
. �

Now we are in a position to complete the proof of Theorem 2.3.

Proposition 5.5. Assume that α P C`ztNu. Then C` Ă ρpWαq and there exists C ą 0
independent of α such that for all z P C` we have

›

›pWα ´ zq
´1
›

›

LpH q
ď

C

Repzq

ˆ

1`
1

|α´N |

˙

.

Proof. Let z P C`. Let F “ pf, gq PH . We prove that the equation

pWα ´ zqU “ F (5.5)

has a unique solution U “ pu, vq P DompWαq. This will prove that z P ρpWαq, and
the explicit expression for U will provide the estimates on pWα ´ zq´1. We identify

f P H̃1pΓq with any representative in 9H1pΓq. We can check all along the proof that
if we add a constant to f , then it only changes u by a constant and hence does not
change its equivalence class in H̃1pΓq. We could directly fix that fp0q “ 0, but then the
independence with respect to an additive constant would be less explicit. For clarity of
the exposition, we divide the proof into several steps distinguished by the bullet mark.
‚ Assume that U “ pu, vq P DompWαq satisfies (5.5). Let j P N . Then uj P H

2
locpR˚`q

and in the sense of distributions on R˚` we have

u2j ´ z
2uj “ gj ` zfj . (5.6)

We identify uj with its continuous representative. Then there exist Aj , Bj P C such
that, for all x ą 0,

ujpxq “ Aje
´zx `Bje

zx ´
1

z2
pρz ˚ gjqpxq ´

1

z
pρz ˚ fjqpxq, (5.7)

with ρz defined by (5.1). Since uj , pρz ˚gjq and pρz ˚fjq belong to 9H1pR˚`q we necessarily
have Bj “ 0. If we set

Ãj “ Aj `
fp0q

2z
, (5.8)

then we have by Lemma 5.4

u1jpxq “ ´zÃje
´zx ´

1

z

`

ρz ˚ pf
1
j ` gjq

˘

pxq `

ż x

0
e´zpx´sqgjpsq ds (5.9)

and
vjpxq “ zujpxq ` fjpxq

“ zÃje
´zx ´

1

z

`

ρz ˚ pf
1
j ` gjq

˘

pxq `

ż x

0
e´zpx´sqf 1jpsq ds.

(5.10)

By continuity of u at 0 we have for all j P N

Ãj “ up0q `
fp0q

z
`

1

z2

`

ρz ˚ pf
1
j ` gjq

˘

p0q, (5.11)

so the Robin condition in (2.5) reads

N
ÿ

j“1

ˆ

´zup0q ´ fp0q ´
2

z

`

ρz ˚ pf
1
j ` gjq

˘

p0q

˙

` αzup0q ` αfp0q “ 0.

This gives

up0q `
fp0q

z
“

2

z2pα´Nq

N
ÿ

`“1

`

ρz ˚ pf
1
` ` g`q

˘

p0q. (5.12)
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Thus (5.11) gives an explicit expression for Ãj and, by (5.9)–(5.10), U is uniquely
determined by F . This proves the injectivity of pWα ´ zq : DompWa ´ zq ÑH .
‚ Conversely, let U “ pu, vq be defined by (5.7) and (5.10), with Bj “ 0 and Aj given
by (5.8), (5.11) and (5.12). Let j P N . Then uj is a solution of (5.6). By Lemma 5.4
we have vj P H

1pR˚`q and u1j P L
2pR˚`q. Moreover, by (5.6),

u2j “ zvj ` gj P L
2pR˚`q.

By construction, u is continuous at 0, then so is v, and the Robin condition in (2.5)
holds. This proves that U P DompWαq and then that z P ρpWαq.
‚ It remains to prove that

}U}H À
}F }H
Repzq

ˆ

1`
1

|α´N |

˙

,

where the symbol À means that we have inequality up to a multiplicative constant which
does not depend on F , α or z. For this we apply Lemma 5.4. By (5.12) we have

ˇ

ˇ

ˇ

ˇ

up0q `
fp0q

z

ˇ

ˇ

ˇ

ˇ

À
}F }H

|z| |α´N |
a

Repzq
.

Then (5.11) gives for all j P N

|Ãj | À
}F }H

|z|
a

Repzq

ˆ

1`
1

|α´N |

˙

.

Finally, with (5.9) and (5.10),

}U}H À

N
ÿ

j“1

`

}u1j}L2pR˚
`q
` }vj}L2pR˚

`q

˘

À
}F }H
Repzq

ˆ

1`
1

|α´N |

˙

,

and the proof is complete. �

6. Damped wave equation

In this section we prove Theorem 2.4 about the time-dependant problem (2.1)–(2.4).

Proof of Theorem 2.4. ‚ Assume that u is a solution of (2.1)–(2.4) on r0, τ r for some
τ ą 0. For t P r0, τ r and j P N we identify ujptq with its representative of class C1

on R`. For j P N there exist ϕj P C
1p´τ,`8q X 9H1p´τ,`8q X 9H2p´τ,`8q and

ψj P C
1pR`q X 9H1pR`q X 9H2pR`q such that ϕp0q “ ψp0q “ 0 and for all t P r0, τ r and

x ą 0 we have

ujpt, xq “ up0, 0q ` ϕjpx´ tq ` ψjpx` tq. (6.1)

The initial condition gives for x ą 0
#

ϕ1jpxq ` ψ
1
jpxq “ Bxup0, xq “ f 1jpxq,

´ϕ1jpxq ` ψ
1
jpxq “ Btup0, xq “ gjpxq,

so

@x ą 0, ψ1jpxq “
f 1jpxq ` gjpxq

2
, ϕ1jpxq “

f 1jpxq ´ gjpxq

2
. (6.2)

On the other hand, the continuity at the central vertex gives for j, k P N and t ą 0,
after differentiation,

@j, k P N ,@t P r0, τ r, ϕ1jp´tq ´ ϕ
1
kp´tq “ ψ1jptq ´ ψ

1
kptq. (6.3)

Finally, the damping condition yields

@t P r0, τ r,
´ α

N
´ 1

¯

N
ÿ

j“1

ϕ1jp´tq “
´ α

N
` 1

¯

N
ÿ

j“1

ψ1jptq. (6.4)
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In particular, we see that if α “ N then we necessarily have
řN
j“1 ψ

1
jptq “ 0 for all

t P r0, τ r, so τ ď t0. On the other hand, if α ‰ N then u is uniquely determined.
‚ Conversely, we assume that α ‰ N and prove that (2.1)–(2.4) indeed has a solution
on R`. For j P N and x ě 0 we set

ϕjpxq “
1

2

ż x

0

`

f 1jpsq ´ gjpsq
˘

ds, ψjpxq “
1

2

ż x

0

`

f 1jpsq ` gjpsq
˘

ds. (6.5)

and then ϕpxq “ pϕjpxqqjPN and ψpxq “ pψjpxqqjPN , seen as column vectors. Then for
s P R˚` we set

ϕp´sq “ ´M´1
´ M`ψpsq,

where

M˘ “

¨

˚

˚

˚

˝

1 ´1
. . .

. . .

1 ´1
α
N ˘ 1 . . . α

N ˘ 1 α
N ˘ 1

˛

‹

‹

‹

‚

. (6.6)

This is possible since detpM´q “ α´N ‰ 0. We have ϕ P C1pR˚´qX 9H1pR˚´qX 9H2pR˚´q.
For s ą 0 we have

ϕp´sq “ ´M´1
´ M`ψpsq ÝÝÝÑ

sÑ0
´M´1

´ M`ψp0q “ 0 “ ϕp0q,

and since pf, gq P DompWαq

ϕ1p´sq “M´1
´ M`ψ

1psq ÝÝÝÑ
sÑ0

M´1
´ M`ψ

1p0q “ ϕ1p0`q.

Thus ϕ P C1pRq X 9H1pRq X 9H2pRq.
Then for t ě 0 and x ą 0 we define u by (6.1) (the choice of up0, 0q is not impor-

tant since u is defined up to an additive constant). We have u P C1pR`, H1pΓqq X

C0pR`, 9H2pΓ˚qq. On the other hand in the sense of distributions we have

Bttu “ Bxxu.

In particular, Bttu P C
0pR`, L2pΓqq, so u P C2pR`, L2pΓqq. All this proves that u is a

solution of (2.1)–(2.4) on R`. Moreover for t ě 0 we have

Epu; tq “ }Btuptq}
2
L2pΓq ` }Bxuptq}

2
L2pΓq

“ 2

ż `8

0

`
ˇ

ˇϕ1px´ tq
ˇ

ˇ

2

CN `
ˇ

ˇψ1px` tq
ˇ

ˇ

2

CN
˘

dx

“ 2

ż `8

´t

ˇ

ˇϕ1psq
ˇ

ˇ

2

CN ds` 2

ż `8

t

ˇ

ˇψ1psq
ˇ

ˇ

2

CN ds.

We have
ż t

´t

ˇ

ˇϕ1psq
ˇ

ˇ

2

CN ds ď

ż t

0

` ˇ

ˇϕ1psq
ˇ

ˇ

2

CN `
›

›M´1
´ M`

›

›

2 ˇ
ˇψ1psq

ˇ

ˇ

2

CN
˘

ds

À

ˆ

1`
1

|α´N |2

˙
ż t

0

` ˇ

ˇϕ1psq
ˇ

ˇ

2

CN `
ˇ

ˇψ1psq
ˇ

ˇ

2

CN
˘

ds

À

ˆ

1`
1

|α´N |2

˙
ż t

0

` ˇ

ˇf 1psq
ˇ

ˇ

2

CN ` |gpsq|
2
CN

˘

ds.

Since

2

ż `8

t

` ˇ

ˇϕ1psq
ˇ

ˇ

2

CN `
ˇ

ˇψ1psq
ˇ

ˇ

2

CN
˘

ds “

ż `8

t

` ˇ

ˇf 1psq
ˇ

ˇ

2

CN `
ˇ

ˇg1psq
ˇ

ˇ

2

CN
˘

ds,

the desired inequality (2.9) follows.
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‚ Now assume that α “ N and that t0 ą 0. Let τ Ps0, t0s. On R` we define ϕj and
ψj by (6.5). Let θ P C8pr0, τ r,Rq such that θp0q “ 0 and θ1p0q “ ϕ11p0q. For j P N and
s Ps0, t0r we set

ϕjp´sq “ θp´sq ` ψjpsq ´ ψ1psq.

In particular ϕ P C1ps´τ,`8r;CN q and ϕ P 9H1ps´τ1,`8r;CN qX 9H2ps´τ1,`8r;CN q
for all τ1 Ps0, τ r. Finally we define u by (6.1). Then u is a solution of (2.1)–(2.4) on
r0, τ r. Moreover for t P r0, τ r we have

Epu, tq ě

ż `8

0

` ˇ

ˇϕ11px´ tq
ˇ

ˇ

2
`
ˇ

ˇψ11px` tq
ˇ

ˇ

2 ˘
dx ě

ż 0

´t

ˇ

ˇϕ11psq
ˇ

ˇ

2
ds ě

ż t

0

ˇ

ˇθ1psq
ˇ

ˇ ds.

In particular we can choose θ in such a way that Epu; tq goes to `8 as t goes to τ . �

7. Relationship with relativistic quantum mechanics

If the space variable x is restricted to a bounded interval and α is real, the classical
interpretation of the wave equation (1.1) is that of a vibrating string, subject to a highly
localised damping [7] . Strictly speaking, the genuine damping (or friction) corresponds
to negative α, while positive α models a supply of energy into the system. However, we
use the word “damping” even in the more general situation whenever α has a non-zero
real part, so that the physical system is not conservative.

The goal of this last section is to provide a physical motivation in the unconventional
setting of unbounded geometries and/or non-real α. To this purpose, we recall a more or
less well known relationship between the damped wave equation and the Dirac equation
in relativistic quantum mechanics (see, e.g., [17, 16, 10]). (Here the word relativistic
stands for the original usage of the equation, recent years have brought motivations to
consider the same mathematical problem for non-relativistic systems like graphene.)

For simplicity, let us restrict to the simplest graph N “ 2, which can be identified
with the real axis R. Instead of substituting pu, vq “ pψ, Btψq as above (2.7), let us
write pξ, ηq “ pBtψ, Bxψ). Then the wave equation (1.1) is formally transferred to the
first-order system

Bt

ˆ

ξ
η

˙

“ iDα

ˆ

ξ
η

˙

with Dα “

ˆ

´iαδ ´iBx
´iBx 0

˙

. (7.1)

Here Dα is a Dirac-type operator considered in the Hilbert space L2pRq ˆ L2pRq. More
specifically, D0 with domain H1pRq ˆ H1pRq is the (self-adjoint) Dirac Hamiltonian
modelling the propagation of relativistic (quasi-)particles in quantum mechanics. The
perturbation

`

´iαδ 0
0 0

˘

(properly introduced via the jump condition ηp0`q ´ ηp0´q “
´αξp0q together with the continuity ξp0`q “ ξp0´q “ ξp0q) represents neither a purely
electric nor scalar potential, but it is self-adjoint (and therefore quantum-mechanically
relevant) whenever α is purely imaginary. Moreover, the real part of α is potentially
eligible in quasi-Hermitian quantum mechanics [22].

It is interesting to compare the present model (7.1) with the δ-shell interaction Hamil-
tonian

D̃τ “

ˆ

τδ ´iBx
´iBx τδ

˙

(7.2)

intensively studied for real τ during the last decade (see [5, 23, 18, 8] for counterparts

of (7.2) in R3 and its variants). Here D̃τ is properly introduced via the transmission
condition

ˆ

τ{2 ´i
´i τ{2

˙ˆ

ξp0`q
ηp0`q

˙

`

ˆ

τ{2 i
i τ{2

˙ˆ

ξp0´q
ηp0´q

˙

“

ˆ

0
0

˙

that the functions from the operator domain of D̃τ must satisfy. This definition makes
sense even for complex τ . If τ is real, the operator D̃τ is self-adjoint and its (purely
continuous) spectrum coincides with the real axis R. In fact, the same spectral picture
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extends to be true for any τ P Czt˘2iu. However, if τ “ 2i (respectively, τ “ ´2i), then

the whole upper (respectively, lower) complex plane belongs to the spectrum of D̃τ . So
we again see the presence of the not-any-more-magical number 2.
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