Light triggered self-construction of supramolecular organic nanowires as metallic interconnects
Résumé
The construction of soft and processable organic material able to display metallic conduction properties—a large density of freely moving charges—is a major challenge for electronics. Films of doped conjugated polymers are widely used as semiconductor devices, but metallic-type transport in the bulk of such materials remains extremely rare. On the other hand, single-walled carbon nanotubes can exhibit remarkably low contact resistances with related large currents, but are intrinsically very difficult to isolate and process. Here, we describe the self-assembly of supramolecular organic nanowires between two metallic electrodes, from a solution of triarylamine derivative, under the simultaneous action of light and electric field triggers. They exhibit a combination of large conductivity values (>5 × 103 S m−1) and a low interface resistance (<2 × 10−4 Ω m). Moreover, the resistance of nanowires in series with metal interfaces systematically decreases when the temperature is lowered to 1.5 K, revealing an intrinsic metallic behaviour.
Origine | Fichiers produits par l'(les) auteur(s) |
---|