Evidential Link Prediction in Uncertain Social Networks Based on Node Attributes - Archive ouverte HAL
Communication Dans Un Congrès Année : 2017

Evidential Link Prediction in Uncertain Social Networks Based on Node Attributes

Résumé

The design of an efficient link prediction method is still an open hot issue that has been addressed mostly through topological properties in recent years. Yet, other relevant information such as the node attributes may inform the link prediction task and enhance performances. This paper presents a novel framework for link prediction that combines node attributes and structural properties. Furthermore, the proposed method handles uncertainty that characterizes social network noisy and missing data by embracing the general framework of the belief function theory. An experimental evaluation on real world social network data shows that attribute information improves further the prediction results.
Fichier principal
Vignette du fichier
IEAAIE vf Sabrine.pdf (202.08 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03649435 , version 1 (22-04-2022)

Identifiants

Citer

Sabrine Mallek, Imen Boukhris, Zied Elouedi, Eric Lefevre. Evidential Link Prediction in Uncertain Social Networks Based on Node Attributes. International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE'2017, Jun 2017, Arras, France. pp.595-601, ⟨10.1007/978-3-319-60042-0_65⟩. ⟨hal-03649435⟩

Collections

UNIV-ARTOIS LGI2A
14 Consultations
45 Téléchargements

Altmetric

Partager

More