Binary Multi Channel Morphological Neural Network - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

Binary Multi Channel Morphological Neural Network

Résumé

Neural networks and particularly Deep learning have been comparatively little studied from the theoretical point of view. Conversely, Mathematical Morphology is a discipline with solid theoretical foundations. We combine these domains to propose a new type of neural architecture that is theoretically more explainable. We introduce a Binary Morphological Neural Network (BiMoNN) built upon the convolutional neural network. We design it for learning morphological networks with binary inputs and outputs. We demonstrate an equivalence between BiMoNNs and morphological operators that we can use to binarize entire networks. These can learn classical morphological operators and show promising results on a medical imaging application.
Fichier principal
Vignette du fichier
Bimonn_DGMM_2022_Preprint_for_Arxiv.pdf (774.71 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03644498 , version 1 (19-04-2022)

Identifiants

  • HAL Id : hal-03644498 , version 1

Citer

Théodore Aouad, Hugues Talbot. Binary Multi Channel Morphological Neural Network. 2022. ⟨hal-03644498⟩
113 Consultations
60 Téléchargements

Partager

More