Mathematical Morphology Operators for Harmonic Analysis - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

Mathematical Morphology Operators for Harmonic Analysis

Résumé

Mathematical Morphology provides powerful tools for image processing, analysis and understanding. In this paper, we will work on how to apply these tools to analyze scores, that are image-like representations of Music. To do that, we will consider chroma rolls, a representation of scores similar to piano rolls that use chromas instead of pitches. Endowing this representation with a lattice structure, one can define Mathematical Morphology operators, and setting a group structure to the Time-Frequency plane allows us to use the notion of structuring element. We will show throughout some examples how this relates with the notion of pitch-class set and chord progressions, and we will analyze two Chopin's Nocturnes with this technique.
Fichier principal
Vignette du fichier
Mathematical_Morphology_Operators_for_Harmonic_Analysis-Gonzalo_Romero-Garcia.pdf (331.73 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03638362 , version 1 (12-04-2022)
hal-03638362 , version 2 (04-10-2022)

Identifiants

  • HAL Id : hal-03638362 , version 1

Citer

Gonzalo Romero-García, Isabelle Bloch, Carlos Agon. Mathematical Morphology Operators for Harmonic Analysis. 2022. ⟨hal-03638362v1⟩
235 Consultations
168 Téléchargements

Partager

More