Fe2.5Co0.3Zn0.2O4/CuCr-LDH as a visible-light-responsive photocatalyst for the degradation of caffeine, bisphenol A, and simazine in pure water and real wastewater under photo-Fenton-like degradation process
Résumé
This paper outlines the synthesis and application of a sustainable composite for the photo-Fenton-like degradation of caffeine, bisphenol A, and simazine. The phase, morphology, optical and magnetic properties of the samples were evaluated by different characterization techniques. The composite of Fe2.5Co0.3Zn0.2O4 and copper-chromium layered double hydroxide (CuCr-LDH) was determined to be the most favorable photocatalyst in the photo-Fenton-like process when compared with Fe3O4, Fe2.5Co0.3Zn0.2O4, CuCr-LDH, and Fe3O4/CuCr-LDH composite. Studying the efficiency of the photo-Fenton-like degradation process in the presence of the Fe2.5Co0.3Zn0.2O4/CuCr-LDH composite revealed a degradation rate constant of caffeine twice more than the sum of those obtained for the individual processes. This ascribes to the synergistic effect by which the photo-generated electron-hole from the catalyst and the efficient reduction of Fe3+, Cu2+, etc. during the photo-Fenton-like reaction is accelerated. Moreover, under the optimal condition and after 120 min of heterogenous photo-Fenton-like process at natural pH, > 90% of pollutants mixture was decomposed. The experiments fulfilled in near-real conditions demonstrated I) the high stability and magnetically recoverability of the photocatalyst and II) the proper degradation performance of the applied heterogenous photo-Fenton-process in the removal of pollutant mixture in different water bodies and in the presence of chloride and bicarbonate ions.
photo-Fenton-like process at natural pH, > 90% of pollutants mixture was decomposed. The experiments fulfilled
in near-real conditions demonstrated I) the high stability and magnetically recoverability of the photocatalys