GROUP DIFFUSION LMS - Archive ouverte HAL
Communication Dans Un Congrès Année : 2016

GROUP DIFFUSION LMS

Jie Chen
  • Fonction : Auteur
  • PersonId : 1004504
Cédric Richard
Ali Sayed
  • Fonction : Auteur
  • PersonId : 1131916

Résumé

Considering groups of variables, rather than variables individually, can be beneficial for estimation accuracy if structural relationships between variables exist (e.g., spatial, hierarchical or related to the physics of the problem). Group-sparsity inducing estimators are typical examples that benefit from such type of prior knowledge. Building on this principle, we show that the diffusion LMS algorithm for distributed inference over networks can be extended to deal with structured criteria built upon groups of variables, leading to a flexible framework that can encode various structures in the parameters to estimate. We also propose an unsupervised online strategy to differentially promote or inhibit collaborations between nodes depending on the group of variables at hand.
Fichier non déposé

Dates et versions

hal-03633817 , version 1 (11-04-2022)

Identifiants

Citer

Jie Chen, Shang Kee Ting, Cédric Richard, Ali Sayed. GROUP DIFFUSION LMS. 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Mar 2016, Shanghai, France. pp.4925-4929, ⟨10.1109/ICASSP.2016.7472614⟩. ⟨hal-03633817⟩
7 Consultations
0 Téléchargements

Altmetric

Partager

More