Clustering high dimensional meteorological scenarios: Results and performance index - Archive ouverte HAL
Article Dans Une Revue International Journal of Approximate Reasoning Année : 2021

Clustering high dimensional meteorological scenarios: Results and performance index

Résumé

The Réseau de Transport d'Electricité (RTE) is the French main electricity network operational manager and dedicates large number of resources and efforts towards understanding climate time series data for the purpose of energy optimization. A key challenge at the core of understanding the climate time series data is being able to detect common patterns between temperatures time series, and to choose representative scenarios for simulations, which in turn can be used for energy optimization. We addressed this challenge using climate time series provided by RTE, which is comprised of 200 different possible scenarios on a grid of geographical locations in France. We first show that the choice of the distance used for the clustering has a strong impact on the meaning of the results. Depending on the type of distance used, either spatial or temporal patterns prevail. Later we discuss the difficulty of fine-tuning distances with a dimension reduction procedure and we propose a methodology based on a carefully designed index.
Fichier principal
Vignette du fichier
2012.07487 (8.67 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03625696 , version 1 (05-12-2023)

Identifiants

Citer

Yamila Barrera, Leonardo Boechi, Matthieu Jonckheere, Vincent Lefieux, Dominique Picard, et al.. Clustering high dimensional meteorological scenarios: Results and performance index. International Journal of Approximate Reasoning, 2021, 139, pp.1-11. ⟨10.1016/j.ijar.2021.08.007⟩. ⟨hal-03625696⟩
49 Consultations
12 Téléchargements

Altmetric

Partager

More