On the polygonal Faber-Krahn inequality - Archive ouverte HAL
Article Dans Une Revue Journal de l'École polytechnique — Mathématiques Année : 2023

On the polygonal Faber-Krahn inequality

Résumé

It has been conjectured by Pólya and Szegö seventy years ago that the planar set which minimizes the first eigenvalue of the Dirichlet-Laplace operator among polygons with n sides and fixed area is the regular polygon. Despite its apparent simplicity, this result has only been proved for triangles and quadrilaterals. In this paper we prove that for each n ≥ 5 the proof of the conjecture can be reduced to a finite number of certified numerical computations. Moreover, the local minimality of the regular polygon can be reduced to a single numerical computation. For n = 5, 6, 7, 8 we perform this computation and certify the numerical approximation by finite elements, up to machine errors.
Fichier principal
Vignette du fichier
submitted.pdf (1.01 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03625471 , version 1 (30-03-2022)

Identifiants

Citer

Beniamin Bogosel, Dorin Bucur. On the polygonal Faber-Krahn inequality. Journal de l'École polytechnique — Mathématiques, 2023, 11, pp.19-105. ⟨10.5802/jep.250⟩. ⟨hal-03625471⟩
88 Consultations
133 Téléchargements

Altmetric

Partager

More