Accurate Deep Learning-aided Density-free Strategy for Many-Body Dispersion-corrected Density Functional Theory - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Journal of Physical Chemistry Letters Année : 2022

Accurate Deep Learning-aided Density-free Strategy for Many-Body Dispersion-corrected Density Functional Theory

Résumé

Using a Deep Neuronal Network model (DNN) trained on the large ANI-1 data set of small organic molecules, we propose a transferable density-free many-body dispersion model (DNN-MBD). The DNN strategy bypasses the explicit Hirshfeld partitioning of the Kohn-Sham electron density required by MBD models to obtain the atom-in-molecules volumes used by the Tkatchenko-Scheffler polarizability rescaling. The resulting DNN-MBD model is trained with minimal basis iterative Stockholder atomic volumes and, coupled to Density Functional Theory (DFT), exhibits comparable (if not greater) accuracy to other approaches based on different partitioning schemes. Implemented in the Tinker-HP package, the DNN-MBD model decreases the overall computational cost compared to MBD models where the explicit density partitioning is performed. Its coupling with the recently introduced Stochastic formulation of the MBD equations (J. Chem. Theory. Comput., 2022, 18, 3, 1633-1645) enables large routine dispersion-corrected DFT calculations at preserved accuracy. Furthermore, the DNN electron density-free features extend MBD's applicability beyond electronic structure theory within methodologies such as force fields and neural networks.
Fichier principal
Vignette du fichier
2203.15739.pdf (1.27 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03624156 , version 1 (15-01-2024)

Identifiants

Citer

Pier Paolo Poier, Théo Jaffrelot Inizan, Olivier Adjoua, Louis Lagardère, Jean-Philip Piquemal. Accurate Deep Learning-aided Density-free Strategy for Many-Body Dispersion-corrected Density Functional Theory. Journal of Physical Chemistry Letters, 2022, 13 (19), pp.4381-4388. ⟨10.1021/acs.jpclett.2c00936⟩. ⟨hal-03624156⟩
67 Consultations
7 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More