Provable Phase retrieval via Mirror Descent - Archive ouverte HAL
Article Dans Une Revue SIAM Journal on Imaging Sciences Année : 2023

Provable Phase retrieval via Mirror Descent

Résumé

We consider the problem of phase retrieval that consists in recovering an n-dimensional real vector from the magnitude of its m-linear measurements. This paper presents a new approach allowing to lift the classical global Lipschitz continuity requirement on the gradient of the non-convex objective to minimize. We propose a mirror descent algorithm based on a wisely chosen Bregman divergence. We show that when the number of measurements m is large enough, the mirror descent algorithm, carefully initialized, converges linearly with a dimension-independent convergence rate. Consequently, the original signal can be reconstructed exactly up to a global sign change. We state our results for two types of measurements: iid standard Gaussian and those obtained by Coded Diffraction Patterns (CDP) for Randomized Fourier Transform.
Fichier principal
Vignette du fichier
mdbt_phaserecovery_arxiv (1).pdf (1.57 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03622580 , version 1 (29-03-2022)
hal-03622580 , version 2 (22-04-2022)
hal-03622580 , version 3 (17-10-2022)
hal-03622580 , version 4 (08-03-2023)
hal-03622580 , version 5 (21-06-2023)
hal-03622580 , version 6 (20-06-2024)

Identifiants

Citer

Jean-Jacques Godeme, Jalal Fadili, Xavier Buet, Myriam Zerrad, Michel Lequime, et al.. Provable Phase retrieval via Mirror Descent. SIAM Journal on Imaging Sciences, 2023, 16 (3), pp.1106. ⟨hal-03622580v4⟩
564 Consultations
171 Téléchargements

Altmetric

Partager

More