Which Nuclear Shape Generates the Strongest Attraction on a Relativistic Electron? An Open Problem in Relativistic Quantum Mechanics - Archive ouverte HAL
Chapitre D'ouvrage Année : 2023

Which Nuclear Shape Generates the Strongest Attraction on a Relativistic Electron? An Open Problem in Relativistic Quantum Mechanics

Résumé

In this article we formulate several conjectures concerning the lowest eigenvalue of a Dirac operator with an external electrostatic potential. The latter describes a relativistic quantum electron moving in the field of some (pointwise or extended) nuclei. The main question we ask is whether the eigenvalue is minimal when the nuclear charge is concentrated at one single point. This well-known property in nonrelativistic quantum mechanics has escaped all attempts of proof in the relativistic case.
Fichier principal
Vignette du fichier
Art-volume-Catriona-MJE_v06.pdf (173.35 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03619203 , version 1 (25-03-2022)
hal-03619203 , version 2 (12-10-2022)

Identifiants

Citer

Maria Esteban, Mathieu Lewin, Éric Séré. Which Nuclear Shape Generates the Strongest Attraction on a Relativistic Electron? An Open Problem in Relativistic Quantum Mechanics. Mathematics Going Forward, 2313, Springer International Publishing, pp.487-497, 2023, Lecture Notes in Mathematics, ⟨10.1007/978-3-031-12244-6_34⟩. ⟨hal-03619203v2⟩
104 Consultations
82 Téléchargements

Altmetric

Partager

More