Gradient Vector Fields of Discrete Morse Functions and Watershed-cuts - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

Gradient Vector Fields of Discrete Morse Functions and Watershed-cuts

Résumé

In this paper, we study a class of discrete Morse functions, coming from Discrete Morse Theory, that are equivalent to a class of simplicial stacks, coming from Mathematical Morphology. We show that, as in Discrete Morse Theory, we can see the gradient vector field of a simplicial stack (seen as a discrete Morse function) as the only relevant information we should consider. Last, but not the least, we also show that the Minimum Spanning Forest of the dual graph of a simplicial stack is induced by the gradient vector field of the initial function. This result allows computing a watershed-cut from a gradient vector field.
Fichier principal
Vignette du fichier
article.pdf (2.01 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03614850 , version 1 (21-03-2022)
hal-03614850 , version 2 (01-10-2022)

Identifiants

Citer

Nicolas Boutry, Gilles Bertrand, Laurent Najman. Gradient Vector Fields of Discrete Morse Functions and Watershed-cuts. DGMM 2022 -- IAPR Second International Conference on Discrete Geometry and Mathematical Morphology, Étienne Baudrier; Benoît Naegel; Adrien Krähenbühl; Mohamed Tajine, Oct 2022, Strasbourg, France. pp.1--13, ⟨10.1007/978-3-031-19897-7_4⟩. ⟨hal-03614850v2⟩
84 Consultations
117 Téléchargements

Altmetric

Partager

More