A New Probabilistic Representation of the Alternating Zeta Function and a New Selberg-like Integral Evaluation - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

A New Probabilistic Representation of the Alternating Zeta Function and a New Selberg-like Integral Evaluation

Résumé

In this paper, we present two new representations of the alternating Zeta function. We show that for any s ∈ C this function can be computed as a limit of a series of determinant. We then express these determinants as the expectation of a functional of a random vector with Dixon-Anderson density. The generalization of this representation to more general alternating series allows us to evaluate a Selberg-type integral with a generalized Vandermonde determinant.
Fichier principal
Vignette du fichier
Alternating-Zeta.pdf (511.14 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03612591 , version 1 (17-03-2022)

Identifiants

Citer

Serge Iovleff. A New Probabilistic Representation of the Alternating Zeta Function and a New Selberg-like Integral Evaluation. 2022. ⟨hal-03612591⟩
40 Consultations
57 Téléchargements

Altmetric

Partager

More