The largest order statistics for the inradius in an isotropic STIT tessellation - Archive ouverte HAL
Journal Articles Extremes Year : 2019

The largest order statistics for the inradius in an isotropic STIT tessellation

Abstract

A planar stationary and isotropic STIT tessellation at time t > 0 is observed in the window Wρ = t −1 √ π ρ · [− 1 2 , 1 2 ] 2 , for ρ > 0. With each cell of the tessellation, we associate the inradius, which is the radius of the largest disk contained in the cell. Using the Chen-Stein method, we compute the limit distributions of the largest order statistics for the inradii of all cells whose nuclei are contained in Wρ as ρ goes to infinity.
Fichier principal
Vignette du fichier
revisedchenavier_nagel.pdf (425.9 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-02189209 , version 1 (19-07-2019)

Identifiers

Cite

Nicolas Chenavier, Werner Nagel. The largest order statistics for the inradius in an isotropic STIT tessellation. Extremes, 2019, 22 (4), pp.571-598. ⟨10.1007/s10687-019-00356-0⟩. ⟨hal-02189209⟩
41 View
57 Download

Altmetric

Share

More