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The largest order statistics for the inradius in an isotropic STIT

tessellation

Nicolas Chenavier ∗and Werner Nagel†

28th June 2019

Abstract

A planar stationary and isotropic STIT tessellation at time t > 0 is observed in the window Wρ =
t−1√π ρ · [− 1

2
, 1
2
]2, for ρ > 0. With each cell of the tessellation, we associate the inradius, which is the

radius of the largest disk contained in the cell. Using the Chen-Stein method, we compute the limit
distributions of the largest order statistics for the inradii of all cells whose nuclei are contained in Wρ as
ρ goes to infinity.

Keywords: Stochastic Geometry; Random Tessellations; Extreme Values; Poisson Approximation
AMS 2010 Subject Classifications: 60D05 . 60G70 . 60F05 . 62G32

1 Introduction

A planar tessellation T in R2 is a countable collection of non-empty convex polygons, called cells, with disjoint
interiors which subdivides the plane R2, and such that the number of cells intersecting any bounded subset of
R2 is finite. Let T be the set of planar tessellations, endowed with the usual σ-field, see p. 8. A random planar
tessellation is a random variable with values in T . For a complete account on random planar tessellations,
and more generally random tessellations in a d-dimensional Euclidean space, d ≥ 2, we refer to the books
[18, 20].

One of the important models is the STIT (STable under ITerations) tessellation. This random tessella-
tion was introduced in [15] and has potential applications for the modeling of crack patterns or of fracture
structures, such as the so-called craquelée on pottery surfaces, drying films of colloidal particles, or struc-
tures observed in geology [7, 13]. There are quite a few theoretical results for STIT tessellations, including
ergodicity [8], mixing properties [6], computations of distributions [12] and a Mecke-type formula [14].

Let Y = (Yt, t > 0) be a STIT tessellation process in the Euclidean plane R2, where for any t > 0 the
tessellation Yt is spatially stationary and isotropic. The Euclidean plane R2 is endowed with its Euclidean
norm || · ||. Let t > 0 be fixed. With each cell z ∈ Yt we associate the incenter c(z) of z, defined as the center
of the largest disk included in z. For each cell the incenter exists and is almost surely unique. Now, let B be
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a Borel subset in R2 with area a(B) ∈ (0,∞). The cell intensity γt of Yt is defined as the mean number of
cells per unit area, i.e.

γt =
1

a(B)
E [ #{z ∈ Yt : c(z) ∈ B} ] .

Because a STIT tessellation is stationary, the intensity is in fact independent of the Borel subset B ⊂ R2. In

the present paper, the STIT tessellation Yt is scaled in such a way that γt = t2

π . The typical cell is a random
polygon Z whose distribution is given by

E [ g(Z) ] =
1

γt a(B)
E

 ∑
z∈Yt:c(z)∈B

g(z − c(z))

 , (1.1)

for all nonnegative measurable functions g : K0 → R on the set K0 of centered convex bodies, i.e. all non-
empty convex compact sets K ⊂ R2 with c(K) = 0, endowed with the Hausdorff topology. (For those random
tessellations for which the incenters of cells are not a.s. unique, choose another center function c for the cells).

It is notable that the distribution of the typical cell in a STIT tessellation is the same as in a stationary
Poisson line tessellation with corresponding parameters [15], i.e. in our case, the stationary and isotropic
Poisson line tessellation with the same cell number intensity γt.

In the present paper, as a first approach on extremal properties of a STIT tessellation, we study the
largest order statistics for the inradius. The inradius is one of the rare geometric characteristics for which the
distribution can be made explicit. Before stating our main theorem, we introduce some notation. For each
cell z ∈ Yt, we denote by R(z) the inradius of z, i.e. the radius of the largest disk included in the cell z. It is
known that the inradius of the typical cell of Yt has an exponential distribution with parameter 2t (Lemma
3 in [15]), i.e.

P (R(Z) > v ) = e−2tv, v ≥ 0. (1.2)

Consider the family Wρ = t−1√π ρ · [− 1
2 ,

1
2 ]2, ρ > 0, of squares which we refer to as windows. Now, for each

threshold v ≥ 0, let NWρ
(v) be the number of cells with incenters in Wρ and with inradii larger than v, i.e.

NWρ
(v) :=

∑
z∈Yt:c(z)∈Wρ

1R(z)>v . (1.3)

The cells with inradius exceeding v are referred to as exceedances. According to (1.1), the mean number of
exceedances is given by E

[
NWρ(v)

]
= γt t

−2 π ρ P (R(Z) > v ).
In this paper, we provide a Poisson approximation of the number of exceedances when the size ρ of the

window goes to infinity. The underlying threshold which we consider has to depend on ρ. To define it, let
τ > 0 be a fixed value. The threshold is chosen as a function vρ, ρ > 0, in such a way that the mean number
of exceedances equals τ , i.e.

E
[
NWρ

(vρ)
]

= γt t
−2 π ρ P (R(Z) > vρ ) = τ. (1.4)

Thus, the threshold is chosen as:

vρ := vρ(τ) =
1

2t
(log ρ− log τ). (1.5)

We consider the convergence of distributions with respect to the total variation. In the particular case of
two random variables X and Z with values in N0 = {0, 1, 2, . . .}, we recall that the total variation distance is
given by

dTV (X,Z) := 2 sup
A⊂N0

|P (X ∈ A )− P (Z ∈ A ) |.
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We are now prepared to state our main result.

Theorem 1.1. Let Yt be a stationary and isotropic STIT tessellation in R2 at time t > 0 with cell number

intensity γt = t2

π . Let τ > 0 be fixed. Let vρ be as in (1.5) and NWρ
(vρ) as in (1.3). Furthermore, let Z be a

random variable with a Poisson distribution with parameter τ . Then

dTV (NWρ
(vρ), Z) −→

ρ→∞
0. (1.6)

In particular, for each nonnegative integer r we have

P
(
NWρ(vρ) = r

)
−→
ρ→∞

e−τ · τ
r

r!
.

Now, for each k ≥ 1, let M
(k)
Wρ

be the k-th largest value of the inradius over all cells with incenter in Wρ,

and set M
(k)
Wρ

= 0 if the number of such cells is smaller than k. The random variables M
(k)
Wρ

are referred to as

the order statistics. In particular, when k = 1, the random variable M
(1)
Wρ

is the maximum of the inradii over
all cells with incenter in Wρ. As a corollary of Theorem 1.1, we obtain the following result.

Corollary 1.2. With the same assumptions as in Theorem 1.1 we have for all k ≥ 1

P
(
M

(k)
Wρ
≤ vρ

)
−→
ρ→∞

k−1∑
r=0

e−τ · τ
r

r!
.

This result is a direct consequence of Theorem 1.1 and of the fact that M
(k)
Wρ
≤ vρ if and only if NWρ

(vρ) ≤
k − 1. According to Corollary 1.2, the maximum of inradii belongs to the domain of attraction of a Gumbel
distribution. Indeed, by taking τ = e−u and k = 1, we obtain

P
(
M

(1)
Wρ
≤ 1

2t
log ρ+

1

2t
u

)
−→
ρ→∞

e−e
−u
, (1.7)

with u ∈ R. This limit result is classical in Extreme Value Theory according to Gnedenko’s theorem (see e.g.
Theorem 1.1.3 in [5]).

It is noticeable that the largest order statistics of the inradius in a STIT tessellation have asymptotically
the same distribution as the order statistics of the inradius in a Poisson line tessellation with the same
intensity (see Theorem 1.1 (ii) in [4]). This fact is not surprising in the sense that the typical cell of a STIT
tessellation has the same distribution as the typical cell of a stationary Poisson line tessellation. However,
Theorem 1.1 and Corollary 1.2 of the present paper are not consequences of Theorem 1.1 (ii) of [4]. Indeed,
dealing with extremes requires a specific treatment of correlations between cells and a mixing condition: the
fact that two random tessellations have the same typical cell is not sufficient to ensure that the extremes
have the same behaviour. Although Theorem 1.1 and Theorem 1.1 (ii) of [4] are both based on Poisson
approximation, the methods which are used are different. In [4], the Poisson approximation is derived from
the method of moments whereas, in our paper, this is based on the Chen-Stein method. We think that the
method of moments is not suitable for STIT tessellations because they are based on a time process. A method
similar to the one used in [4] should lead to very technical computations in the context of STIT tessellation.

Our paper complements [2, 3] where Poisson-Voronoi tessellations are treated. However, although Theorem
1 in [3] is a general result on extremes for random tessellations, the conditions of this theorem are too restrictive
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to be applied to STIT tessellations. Indeed, Theorem 1 in [3] needs a so-called finite-range condition (FRC)
which is not satisfied for a STIT tessellation. The (FRC) means that the parameter b3 introduced in (3.4) is
zero.

Our paper is organized as follows. In Section 2, we set up the notation, formally introduce the STIT
tessellation processes and recall several known results which will be used in the proof of Theorem 1.1. In
Section 3, we state technical results which will be used to prove our main theorem. The proofs of these
technical lemmas and of Theorem 1.1 are given in Sections 4 and 5, respectively. In Section 6 we mention
some potential extension of our main theorem.

2 Preliminaries

2.1 Notation

By S1 we denote the unit sphere centered at the origin. For c ∈ R2 and R > 0, the set B(c,R) denotes the
topologically closed (Euclidean) disk with center c ∈ R2 and radius R > 0. For any subset B ⊂ R2, the set
B◦ denotes the interior of B. If B is a Borel subset, we recall that its area is denoted by a(B). Further, ⊕
and 	 denote the Minkowski addition and subtraction of sets, respectively.

We denote by H the set of all lines in the plane. For any B ⊂ R2, we write

[B] := {H ∈ H : H ∩B 6= ∅}.

By Λ, we denote the measure on the set of lines H (endowed with the usual σ-algebra, see e.g. [18]), which
is invariant under translations and rotations of the plane, with normalization Λ([B(0, 1)]) = 2. In particular,
for any convex polygon z ⊂ R2, we have Λ([z]) = perimeter(z)/π. We shortly write dH instead of Λ(dH) in
integrals over the set of lines. Thus, for all nonnegative measurable functions f : H → R, we have:∫

H
f(H)dH =

∫
(0,∞)

∫
S1

f(H(r, u))dr σ(du), (2.1)

where H(r, u) is the line with distance r > 0 from the origin and normal direction u ∈ S1, and where σ is the
rotation invariant measure on S1 with normalization σ(S1) = 2.

Given three lines H1, H2 and H3 in general position, we use the notation H1:3 := (H1, H2, H3) ∈ H3,
and we denote by ∆(H1:3) the unique triangle that can be formed by the intersection of halfplanes induced
by these lines, and B(H1:3), c(H1:3), R(H1:3) are the incircle, the incenter and the inradius of ∆(H1:3),
respectively. In particular, B(H1:3) = B(c(H1:3), R(H1:3)). Similarly, if s1, s2, s3 are three linear segments
in R2 in general position, we write s1:3 := (s1, s2, s3). Correspondingly, B(s1:3), c(s1:3), R(s1:3) denote the
incircle, the incenter and the inradius of the triangle formed by the three lines containing the three segments.
With a slight abuse of notation, we also write {s1:3} = {s1, s2, s3}.

Let Yt be a STIT tessellation at time t. For any Borel subset B ⊂ R2 and for any threshold v ≥ 0, we
write

MB = max
z∈Yt:c(z)∈B

R(z) and NB(v) =
∑

z∈Yt:c(z)∈B
1R(z)>v . (2.2)

This notation NB(v) is consistent with (1.3).
Moreover, for any finite set A, we denote by |A| the number of elements of A. For any real number x, we

denote by bxc the integer part of x. Given a probability space (Ω, E ,P), and two random variables X and Y

defined on Ω, the notation X
d
= Y indicates that X and Y have the same distribution. We write E [Y |X ] for

the conditional expectation of Y with respect to X.
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2.2 The STIT tessellation

The STIT tessellation process in the d-dimensional Euclidean space was first introduced in [15]. Since then,
in a series of publications several equivalent descriptions were given. In the present paper we consider planar
stationary and isotropic STIT tessellations. Below we give a short reminder for this particular case only.

We start with the construction of a tessellation process (Yt,W , t ≥ 0) in a bounded convex polygon
W , referred to as a window. All the random variables that we consider are defined on some probability
space (Ω, E ,P). Let τ0, τ1, τ2, . . . be independent and identically distributed (i.i.d.) random variables, all
exponentially distributed with parameter 1.

(i) The initial state of the process is Y0,W = {z1} := {W}, and the random holding time in this state is
τ0/Λ([W ]), i.e. it is exponentially distributed with parameter Λ([W ]).

(ii) At the end of the holding time, the window W is divided by a random line H1 with law (Λ([W ]))−1Λ(·∩
[W ]). This law is the probability distribution on [W ] generated by the restricted and normalized measure
Λ. The new state of the STIT process is now {z1, z2}, where z1 := W ∩H+

1 and z2 := W ∩H−1 , and H+
1

and H−1 are the two closed half-planes generated by H1. Here it does not play a role which one is the
positive or the negative half-plane. The random life times of z1 and z2 are τ1/Λ([z1]) and τ2/Λ([z2]),
respectively.

(iii) Now, inductively, for t > 0, assume that Yt,W = {zi1 , . . . , zin}. The life times of the cells are
τi1/Λ([zi1 ]), . . . , τin/Λ([zin ]), respectively. At the end of the life time of a cell zij , this cell is divided
by a random line Hij with the law (Λ([zij ]))

−1Λ(· ∩ [zij ]), which is a probability distribution on [zij ].
Given the state of the tessellation process at the time of division, this line is conditionally independent
from all the other dividing lines used so far. The divided cell zij is deleted from the tessellation and is

replaced by the two “daughter” cells zij ∩H+
ij

and zij ∩H−ij . These cells are endowed with new indexes
from N which are not used before in this process.

An essential property of the construction is that the distribution of the tessellation generated in a window
W is spatially consistent in the following sense. If W and W ′ are two convex polygons with W ⊂ W ′ and

Yt,W , Yt,W ′ the respective random tessellations, then Yt,W
d
= Yt,W ′ ∧W are identically distributed, where

Yt,W ′ ∧W := {z ∩W : z ∈ Yt,W , z ∩W ◦ 6= ∅}

is the restriction of Yt,W ′ to W . This property yields the existence of a stationary random tessellation Yt of
R2 such that its restriction Yt∧W to any window W has the same distribution as the constructed tessellation
Yt,W . Since the measure Λ is invariant under rotation with the normalization Λ([B(0, 1)]) = 2, the STIT

tessellation Yt is isotropic and its intensity is γt = t2

π (see [16]). A “global construction”, that does not refer
to a bounded window, of the process (Yt, t > 0) was given in [11], but this is much more involved.

Throughout this paper, we work with the stationary and isotropic STIT tessellation Yt for some t > 0.
Notice that a scaling property holds in the sense that

t · Yt := {t · z : z ∈ Yt}
d
= Y1. (2.3)

The important constituents of planar STIT tessellations are the maximal segments (also referred to as
I-segments), which are those segments generated by the intersection of a cell with its dividing line. In their
relative interior, these maximal segments can contain endpoints of other maximal segments which appear
later in the process. By mt we denote the set of all maximal segments of Yt. The union of the boundaries of
the cells, the so-called skeleton, is denoted by ∂Yt. It coincides with the union of all maximal segments.
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2.3 Poisson approximation

It is clear that if X(1), . . . , X(bρc) are independent and identically distributed random variables with the
same distribution as the inradius of the typical cell, i.e. with exponential distribution with parameter 2t,

then
∑bρc
i=1 1X(i)>vρ converges in total variation to a Poisson random variable with parameter τ , where vρ is

as in (1.5). Theorem 1.1 establishes the same type of result, excepted that the random variables which we
consider consist of a family of inradii of cells which are not independent. The main difficulty in our work comes
from the dependence between the cells, and consists in showing that the number of exceedances NWρ

(vρ) has
the same behaviour as if we consider bρc independent random variables, with the same distribution as the
inradius of the typical cell.

In the same spirit as in [3], the main idea to derive a Poisson approximation of NWρ
(vρ) is to apply a

result due to Arratia, Goldstein and Gordon [1]. Their result is based on the Chen-Stein method and gives an
upper bound for the total variation distance between the distribution of a sum of Bernoulli random variables,
and a Poisson distribution.

Let us recall the framework of their result. For an arbitrary index set I, and for i ∈ I, let Xi be a Bernoulli
random variable with pi = P (Xi = 1 ) = 1−P (Xi = 0 ). For each i, j ∈ I, we write pij = E [XiXj ]. Further,
we let

X :=
∑
i∈I

Xi and λ := E [X ] =
∑
i∈I

pi, and assume that 0 < λ <∞.

For each i ∈ I, fix a “neighborhood” Bi ⊂ I with i ∈ Bi, and define

b1 :=
∑
i∈I

∑
j∈Bi

pipj , b2 :=
∑
i∈I

∑
i 6=j∈Bi

pij , b3 :=
∑
i∈I

E

 ∣∣∣∣∣∣E
Xi − pi

∣∣∣∣∣∣
∑

j∈I\Bi
Xj

∣∣∣∣∣∣
 .

Roughly, b1 measures the neighborhood size, b2 measures the expected number of neighbors of a given
occurrence and b3 measures the dependence between an event and the number of occurrences outside its
neighborhood. We are now prepared to state a result on Poisson approximation (see Theorem 1 of [1]).

Proposition 2.1. (Arratia, Goldstein, Gordon) Let Z be a Poisson random variable with mean λ ∈ (0,∞).
With the above notation and the assumptions, we have

dTV (X,Z) ≤ 2

(
(b1 + b2) · 1− e−λ

λ
+ b3 ·min{1, 1.4λ−1/2}

)
.

3 Technical results

First notice, that for arbitrary t > 0 the scaling property (2.3) of the STIT tessellation process yields that∑
z∈Yt:c(z)∈Wρ

1R(z)>vρ
d
=

∑
z∈Y1:c(z)∈tWρ

1R(z)>t vρ .

Hence, it is sufficient to prove Theorem 1.1 for t = 1, which will simplify the formulas. From now on, we will
always set t = 1, with the only exception in Lemma 3.4.

We adapt several arguments contained in [3] to our context. The difficulty compared to [3] comes from
the fact that a STIT tessellation only has a β-mixing property, see [10], whereas the tessellations considered
in [3] satisfy a finite range condition. The main idea is to subdivide the window Wρ into small squares to be
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in the framework of Proposition 2.1. We first introduce this subdivision. Then we establish several technical
lemmas which deal with an asymptotic property and a local property, respectively. These technical lemmas
will be applied to derive Theorem 1.1 in the next section.

3.1 A subdivision of the window

Recall that Wρ =
√
π ρ · [− 1

2 ,
1
2 ]2 if t = 1. When ρ > e, we subdivide the window Wρ into a set V of

sub-squares of equal size, where the number of these sub-squares is

|V | =
(⌊√

π ρ

log log ρ

⌋)2

. (3.1)

The sub-squares are indexed by i := (i1, i2) ∈
[
1,
√
|V |
]2

, analogously to the order of indexing the elements

of a matrix. With a slight abuse of notation, we identify a square with its index.
In our proof we will often use the fact that there exists a ρ0(τ) such that, for all ρ > ρ0(τ), we have

vρ >
√

2

√
π ρ⌊√
π ρ

log log ρ

⌋ , (3.2)

where vρ = vρ(τ) is as in (1.5). The right-hand side in the above equation is the length of the diagonal of a
sub-square i. Thus, for ρ > ρ0(τ), there can be at most one incircle with center in i and radius larger than
vρ.

The distance between sub-squares i and j is defined as d(i, j) := max1≤s≤2 |is − js|. For i ∈ V and r > 0
define the r-neighborhood of i as

S(i, r) := {j ∈ V : d(i, j) ≤ r}. (3.3)

The main idea to prove Theorem 1.1 is to apply Proposition 2.1 with Xi := 1Mi>vρ . We recall that
Mi is the maximum of inradii over all cells with nucleus in i, i.e. Mi = maxz∈Y1:c(z)∈iR(z). The sets Bi
of Proposition 2.1 are replaced by the neighborhoods S(i, ρβ/2) for some β ∈ (0, 1). Furthermore, for all
sub-squares i, j ∈ V , we denote

pi := P (Mi > vρ ) and pij := P (Mi > vρ,Mj > vρ ) .

We also let

b1 :=
∑
i∈V

∑
j∈S(i,ρβ/2)

pipj, b2 :=
∑
i∈V

∑
i6=j∈S(i,ρβ/2)

pij, b3 :=
∑
i∈V

E

 ∣∣∣∣∣∣P
Mi > vρ

∣∣∣∣∣∣
∑

j6∈S(i,ρβ/2)

1Mj>vρ

− pi
∣∣∣∣∣∣
.

(3.4)
In Section 5, we will show that b1, b2 and b3 converge to 0 as ρ goes to infinity, and thus an application of
Proposition 2.1 yields the proof of Theorem 1.1.

3.2 Technical lemmas

We start with some technical lemmas which will be used to prove that b2 and b3 converge to 0 as ρ goes to
infinity.
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Lemmas concerning an upper bound for b2 The arguments showing that b2 converges to 0 are mainly
inspired by [4], and they rely on a “local condition”, i.e. on an upper bound for the probability that the
incircles of two cells with centers in a short distance simultaneously exceed the threshold vρ. The following
lemma provides an upper bound of the probability that ∂Y1 does not intersect a union of disks, and it is an
adaptation of Lemma 4.4 of [4] in the context of STIT tessellations.

Lemma 3.1. There exists a constant η > 0 such that for all pairs of disks B1 = B(c1, r) and B2 = B(c2, r)
with the same radius r > 0 and with centers c1, c2 ∈ R2 satisfying ||c1 − c2|| ≥ 2r we have

P ( ∂Y1 ∩ (B1 ∪B2) = ∅ ) ≤ η · e−2(1+ 2
π )r.

The proof is given in Subsection 4. This lemma is one of the key ingredients to prove that b2 converges to
0. Indeed, together with some non-trivial computations which are performed in Section 5, Lemma 3.1 yields
that, with high probability, the inradii of two cells which are close enough (in the sense that the incenter of
one of them belongs to some sub-square i, and the other belongs to some sub-square j ∈ S(i, ρβ)) cannot
simultaneously exceed the threshold vρ.

The following lemmas are adaptations of Lemma A.1 (i) and Lemma A.1 (ii) in [4] respectively. Recall
that c(H1:3) denotes the incenter of the triangle formed by the lines H1, H2, H3 ∈ H, and dH2:3 = dH2 dH3.

Lemma 3.2. There exists a constant η > 0 such that for all lines H1 ∈ H and all R > 0 we have

G(H1) :=

∫
H2

1c(H1:3)∈B(0,R) dH2:3 ≤ η R2.

The following result is similar to Lemma 3.2, but this time two lines are fixed.

Lemma 3.3. There exists a constant η > 0 such that for all pairs of lines H1, H2 ∈ H and all R > 0 we have

G(H1, H2) :=

∫
H

1c(H1:3)∈B(0,R) dH3 ≤ η R.

Lemmas concerning an upper bound for b3 The arguments showing that b3 converges to 0 are mainly
inspired by [10]. The key argument is a mixing property of the STIT tessellations. However, the general
upper bound for the β-mixing coefficient provided in [10] is not sufficient for our purposes. Therefore, a more
specific treatment of rare events is developed.

To do it, let C denote the set of all compact convex subsets of R2. Furthermore, let σ(I) be the σ-algebra
generated by a family I of sets. Denote by T the set of all tessellations of R2. We endow T with the Borel
σ-algebra B(T ) of the Fell topology, namely

B(T ) := σ ({{T ∈ T : ∂T ∩ C = ∅} : C ∈ C}) .

Moreover, for some compact convex set K ⊂ R2, we define

B(TK) := σ ({{T ∈ T : ∂T ∩ C = ∅} : C ⊂ K, C ∈ C}) ,
B(TKc) := σ ({{T ∈ T : ∂T ∩ C = ∅} : C ⊂ Kc, C ∈ C}) .

Let K ′,K be two convex polygons such that 0 ∈ K ′ ⊂ K. In [9] the concept of encapsulation was
introduced. It means that there is a state of the STIT process Y = (Yt, t > 0) such that all facets of K ′ are
separated from the facets of K by facets of the tessellation before the interior of K ′ is divided by a facet of
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the tessellation. Formally, denoting the 0-cell by C0
t , i.e. the cell of Yt that contains the origin, we define the

encapsulation time as
S(K,K ′) := inf{t > 0 : K ′ ⊂ C0

t ⊂ K◦},
with the convention inf ∅ =∞. The following lemma is an adaptation of Lemma 6.4 in [10].

Lemma 3.4. Let Y = (Yt, t > 0) be a STIT process. Let 0 ∈ K ′ ⊂ K be two convex polygons, E ∈ B(TKc)
and A ∈ B(TK′). Then for all 0 < s < t we have

|P (Yt ∈ E|Yt ∈ A )− P (Yt ∈ E )|

≤P (Yt ∈ E|Yt ∈ A )− P (Yt−s ∈ A )

P (Yt ∈ A )
· P (Yt ∈ E , S(K,K ′) < s, Ys ∧K ′ = K ′ )

+

∣∣∣∣P (Yt−s ∈ A )

P (Yt ∈ A )
− 1

∣∣∣∣P (Yt ∈ E ) +
P (Yt−s ∈ A )

P (Yt ∈ A )
· P ( {Yt ∈ E} ∩ {S(K,K ′) < s, Ys ∧K ′ = K ′}c ) .

Now we construct particular squares K ′ ⊂ K which are tailored for our purposes. Recall that V is a
subdivision of the window Wρ, ρ > 0, into small squares, and that S(i, r) denotes the r-neighborhood of a
square i ∈ V (see Section 3.1). By S0 we denote the square centered at the origin with side length 2v2

ρ, and

C(i) := Wρ \
⋃

j∈S(i,ρβ/2)

j (3.5)

for the complement with respect to Wρ of the neighborhood of i ∈ V .
Now, because in stationary and isotropic STIT tessellations there are a.s. no cells with pairs of parallel

sides, we can restrict the considerations to the measurable set T ′ ⊂ T of all tessellations which do not contain
cells with pairs of parallel sides. This simplifies the study of incircles of the cells. For any T ∈ T ′, for any
Borel subset B ⊂ R2, and for any threshold v ≥ 0, let

M
(T )
B := max

z∈T :c(z)∈B
R(z) and N

(T )
B (v) :=

∑
z∈T :c(z)∈B

1R(z)>v .

Notice that M
(T )
(C(i))◦ and N

(T )
(C(i))◦(vρ) are the maximum of inradii and the number of exceedances outside a

neighborhood of i. The following lemma provides the background to apply Lemma 3.4.

Lemma 3.5. Let vρ be as in (1.5), with t = 1 and ρ > ρ0(τ) (see (3.2)), and i ∈ V be fixed. Let K =(⋃
j∈S(i,ρβ/2) j

)
	 S0 and K ′ = i⊕ S0. Then

(i)
{
T ∈ T ′ : vρ < M

(T )
i◦ ≤ v2

ρ

}
∈ B(TK′).

(ii)
{
T ∈ T ′ : M

(T )
(C(i))◦ ≤ v

2
ρ and N

(T )
(C(i))◦(vρ) = k

}
∈ B(TKc) for all k ∈ N0.

4 Proofs of technical lemmas

Proof of Lemma 3.1 Let B1 = B(c1, r) and B2 = B(c2, r) be two disks with the same radius r > 0 and with
centers c1, c2 ∈ R2. Denote by [B1|B2] the set of lines which separate B1 and B2, and write conv(B1 ∪ B2)
for the convex hull of B1 ∪B2. According to Corollary 1 in [15], the probability P ( ∂Y1 ∩ (B1 ∪B2) = ∅ ) can
be written as follows:
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• if Λ([B1]) + Λ([B2]) 6= Λ([conv(B1 ∪B2)]), we have

P ( ∂Y1 ∩ (B1 ∪B2) = ∅ ) = e−Λ([conv(B1∪B2)])

+ Λ([B1|B2]) · e−Λ([conv(B1∪B2)]) − e−Λ([B1])e−Λ([B2])

Λ([B1]) + Λ([B2])− Λ([conv(B1 ∪B2)])
, (4.1)

• otherwise, we have

P ( ∂Y1 ∩ (B1 ∪B2) = ∅ ) = e−Λ([conv(B1∪B2)]) + Λ([B1|B2]) e−Λ([B1])e−Λ([B2]). (4.2)

Now, let d := ||c2 − c1|| ≥ 2r. It is clear that

Λ([B1]) = Λ([B2]) = 2r and Λ([conv(B1 ∪B2])) = 2r + 2d/π.

Moreover, because [B1|B2] ⊆ [c1c2], we obtain Λ([B1|B2]) ≤ Λ([c1c2]) = 2d
π , where c1c2 denotes the linear

segment connecting c1 and c2.
We discuss the two cases (4.1) and (4.2). First, assume that d 6= πr and hence Λ([B1]) + Λ([B2]) 6=

Λ([conv(B1 ∪B2)]). Thus, according to (4.1), we have

P ( ∂Y1 ∩ (B1 ∪B2) = ∅ ) ≤ e−(2r+2d/π) +
2d

π
· e
−(2r+2d/π) − e−4r

2r − 2d/π
.

Now, we provide an upper bound, which is independent of d, for the right-hand side. Taking u := 2d
π − 2r,

we have u ≥ ( 4
π − 2)r and

P ( ∂Y1 ∩ (B1 ∪B2) = ∅ ) ≤ e−(u+4r) + (u+ 2r)
e−(u+4r) − e−4r

−u

= e−4r

(
e−u + (u+ 2r) · e

−u − 1

−u

)
= e−4r

(
1 + 2r · 1− e−u

u

)
.

Notice that the function f defined as f(u) = 1−e−u
u if u 6= 0, and f(0) := 1, is positive, continuous and strictly

decreasing on R. Since u ≥ ( 4
π − 2)r, we have 1−e−u

u ≤ 1−e−( 4
π
−2)r

( 4
π−2)r

. Hence,

P ( ∂Y1 ∩ (B1 ∪B2) = ∅ ) ≤ e−4r

(
1 +

2

2− 4
π

(
e(2− 4

π )r − 1
))

≤ 2

2− 4
π

e−2(1+ 2
π )r.

In the case d = πr, the equation (4.2) yields

P ( ∂Y1 ∩ (B1 ∪B2) = ∅ ) ≤ e−(2r+2d/π) +
2d

π
e−4r

= (1 + 2r) e−4r

= o(e−2(1+ 2
π )r),
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which proves the assertion. �

Proof of Lemma 3.2 Let H1 ∈ H be fixed, with normal direction u1 ∈ S1. According to (2.1), we have

G(H1) =

∫
(S1)2

∫
R2

+

1c(H1,H(r2,u2),H(r3,u3))∈B(0,R) dr2:3 σ
⊗2(du2:3).

Now, let (u2, u3) ∈ (S1)2 and (r2, r3) ∈ (0,∞)2 such that H1:3 = (H1, H2, H3) are in general position, with
H2 = H(r2, u2) and H3 = H(r3, u3). For short, we write c := c(H1:3). Let < ·, · > be the scalar product and
identify the points c and ui with their corresponding vectors. Furthermore, let r(c,H) denote the distance of
a line H to a point c ∈ R2. Elementary geometry yields r(c,Hi) = r(0, Hi)− < ui, c > , i = 1, 2, 3. Hence,
for i = 2, 3, we have

ri = r(0, Hi) = r(0, H1)− < u1, c > + < ui, c > . (4.3)

Now, for each u2, u3 ∈ S1, consider the change of variables c 7→ (r2, r3), where r2, r3 are two positive numbers
such that c(H1, H(r2, u2), H(r3, u3)) = c. According to (4.3), this map is linear and it is one-to-one. Its
Jacobian does not depend on c, but only on ui, i = 1, 2, 3, and is be bounded by a constant. This shows
that G(H1) is lower than a constant multiplied by

∫
(0,∞)2

1c∈B(0,R) dc = πR2, which concludes the proof of

Lemma 3.2. �

Proof of Lemma 3.3 This will be sketched only because it relies on the same idea as the proof of Lemma
3.2, see also the proof of Lemma A.1, (ii) of [4]. Let H1, H2 ∈ H be fixed. For each line H3, the incenter
c(H1:3) belongs to one of the two bisecting lines associated with H1 and H2. By considering a linear change
of variables whose Jacobian only depends on the normal vectors, we see that G(H1, H2) is smaller than the
diameter of B(0, R) and thus G(H1, H2) ≤ η R for some constant η. �

Proof of Lemma 3.4 First we write for 0 < s < t

|P (Yt ∈ E|Yt ∈ A )− P (Yt ∈ E )| ≤ |P (Yt ∈ E|Yt ∈ A )− P (Yt ∈ E , S(K,K ′) < s, Ys ∧K ′ = K ′|Yt ∈ A )|
+ |P (Yt ∈ E , S(K,K ′) < s, Ys ∧K ′ = K ′|Yt ∈ A )− P (Yt ∈ E )| .

According to Lemma 6.2 of [10], we can write the first term on the right-hand side as

P (Yt ∈ E|Yt ∈ A )− P (Yt ∈ E , S(K,K ′) < s, Ys ∧K ′ = K ′|Yt ∈ A )

= P (Yt ∈ E|Yt ∈ A )− P (Yt ∈ E , S(K,K ′) < s, Ys ∧K ′ = K ′ ) · P (Yt−s ∈ A )

P (Yt ∈ A )
.

For the second term, we apply Lemma 6.2 of [10] again and write

|P (Yt ∈ E , S(K,K ′) < s, Ys ∧K ′ = K ′|Yt ∈ A )− P (Yt ∈ E )|

≤
∣∣∣∣P (Yt ∈ E , S(K,K ′) < s, Ys ∧K ′ = K ′ ) · P (Yt−s ∈ A )

P (Yt ∈ A )
− P (Yt ∈ E ) · P (Yt−s ∈ A )

P (Yt ∈ A )

∣∣∣∣
+

∣∣∣∣P (Yt ∈ E ) · P (Yt−s ∈ A )

P (Yt ∈ A )
− P (Yt ∈ E )

∣∣∣∣
=
P (Yt−s ∈ A )

P (Yt ∈ A )
P ( {Yt ∈ E} ∩ {S(K,K ′) < s, Ys ∧K ′ = K ′}c )

+

∣∣∣∣P (Yt−s ∈ A )

P (Yt ∈ A )
− 1

∣∣∣∣P (Yt ∈ E ) ,
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which concludes the proof of Lemma 3.4. �

Proof of Lemma 3.5 First, we prove (i). To do it, for each x ∈ R2, T ∈ T ′, we denote by dT (x) the distance
from the point x to the skeleton ∂T of the tessellation T . For a fixed T the function dT is continuous,
piecewise linear, and its local maxima are the incenters of the cells.

For all x ∈ i, and all r ≤ v2
ρ, we have B(x, r) ⊂ K ′, and therefore

{dT (x) > r} := {T ∈ T ′ : dT (x) > r} = {T ∈ T ′ : B(x, r) ∩ ∂T = ∅} ∈ B(TK′).

Let Q denote the set of rational numbers. The idea for the formal proof given below is the following.
Choose an n0 ∈ N0, large enough such that a local maximum c(z) of dT inside a cell z is focused on. Then
this local maximum can be approximated by a sequence of points xn, n > n0, with rational coordinates. A
point xn can be chosen in a distance 1

2n from c(z), not arbitrarily, but in a direction from c(z) where the
slope of the function dT is smaller or equal than in the other directions. Notice that with this method the
incenters which are located in the interior i◦ of i can be identified only; for incenters on the boundary of i we
would need information outside K ′. In a stationary random tessellation there is almost surely no incenter on
the boundary of i.

For ρ > ρ0(τ) and T ∈ T ′, we have the following logical equivalences:

vρ < M
(T )
i◦ ≤ v

2
ρ

⇐⇒ ∃z ∈ T : c(z) ∈ i◦, vρ < M
(T )
i◦ ≤ v

2
ρ

⇐⇒ ∃n0 ∈ N ∀n ≥ n0 ∃xn ∈ (i◦ ∩Q2)∀x ∈
(
B

(
xn,

1

n0

)
\B

(
xn,

1

n

))
∩Q2 :

dT (x) < dT (xn) and vρ < dT (xn) ≤ v2
ρ.

Thus, {T ∈ T ′ : vρ < M
(T )
i◦ ≤ v2

ρ} can be represented as a union, intersection or complement of countably
many events of the type {d(x) > r}, with x ∈ i◦ and r ≤ v2

ρ, and hence it is in B(TK′). This concludes the
proof of (i).

The proof of (ii) relies on the same idea as the proof of (i). Observe that for all x ∈ (C(i))◦, and all
r ≤ v2

ρ, we have that B(x, r) ⊂ Kc, and therefore {d(x) > r} ∈ B(TKc). Moreover, for any pair of points
x1, x2 ∈ (C(i))◦, the linear segment x1x2 ⊂ Kc and therefore {T ∈ T ′ : x1x2 ∩ ∂T 6= ∅} ∈ B(TKc). The
condition xn,ixn,j ∩ ∂T 6= ∅ ensures that xn,i and xn,j are located in different cells. For all T ∈ T ′ we have

M
(T )
(C(i))◦ ≤ v

2
ρ ⇐⇒ ∀x ∈ (C(i))◦ ∩Q2 : B(x, v2

ρ) ∩ ∂T 6= ∅.

Furthermore, for all T ∈ T ′,

N
(T )
(C(i))◦ ≥ k

⇐⇒ ∃n0 ∈ N∀n ≥ n0 ∃(xn,1, . . . , xn,k) ∈
(
(C(i))◦ ∩Q2

)k
:

(∀1 ≤ i < j ≤ k : xn,ixn,j ∩ ∂T 6= ∅) and

∀j ∈ {1, . . . , k}∀x ∈
(
B

(
xn,j ,

1

n0

)
\B

(
xn,j ,

1

n

))
∩Q2 : dT (x) < dT (xn,j) and vρ < dT (xn).

Thus, the set
{
T ∈ T ′ : N

(T )
(C(i))◦ ≥ k and M

(T )
(C(i))◦ ≤ v

2
ρ

}
can be represented as a union, intersection

or complement of countably many events of the type {d(x) > r}, with x ∈ i and r ≤ v2
ρ, and hence it is in

B(TKc). �
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5 Proof of Theorem 1.1

Recall that it is sufficient to prove the theorem for the case t = 1 and that for ρ > ρ0(τ) (see (3.2)) there can
be at most one incircle with center in i ∈ V and radius larger than vρ, so that

NWρ(vρ) =
∑
i∈V

1Mi>vρ . (5.1)

Now, according to (1.4) and (5.1), for all ρ > ρ0(τ), we obtain that

∑
i∈V

pi = E

[∑
i∈V

1Mi>vρ

]
= E

[
NWρ(vρ)

]
= ρ P (R(Z) > vρ ) = τ. (5.2)

Thus, to prove Theorem 1.1, it suffices to show that
∑

i∈V 1Mi>vρ converges in total variation to a Poisson
random variable Z with mean E [Z ] = τ . According to Proposition 2.1, it is sufficient to prove that b1, b2
and b3, defined in (3.4), converge to 0 as ρ goes to infinity. These proofs are given in Sections 5.1, 5.2 and
5.3, respectively.

5.1 Proof of the assertion that b1 converges to 0 for ρ→∞
Because the STIT tessellation Y1 is stationary, the value of pi does not depend on i. Therefore, for i ∈ V , we
have

b1 ≤ |V | · sup
i∈V
|S(i, ρβ/2)| · p2

i ≤ |V | ·
(

2bρβ/2c+ 1
)2

· p2
i .

Now, for ρ > ρ0(τ), we observe that

pi = P (Mi > vρ ) = E

 ∑
z∈Y1:c(z)∈i

1R(z)>vρ

 = a(i) γ1 P (R(Z) > vρ ) = a(i) γ1e
−2vρ , (5.3)

where the last two equalities come from (1.1) and (1.2). Since the area of i is a(i) = πρ
|V | , it follows from (1.5)

that

b1 ≤
τ2

|V |

(
2ρβ/2 + 1

)2

.

According to (3.1), this implies that b1 = O
(
ρ−(1−β) log log ρ

)
. Since β < 1, this proves that b1 converges

to 0 as ρ goes to infinity.

5.2 Proof of the assertion that b2 converges to 0 for ρ→∞
Let i, j ∈ V be fixed, with i 6= j. In the same spirit as in (5.1), for ρ > ρ0(τ), there are at most two incircles
with radii larger than vρ and centers in i and j respectively. Therefore

pij = P (Mi > vρ,Mj > vρ ) = E

 ∑
(z1,z2)∈Y 2

1 :(c(z1),c(z2))∈i×j
1R(z1)>vρ 1R(z2)>vρ

 . (5.4)
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To deal with the right-hand side, we consider three cases, regarding the number of tangential (to the incircle)
maximal segments that are common to both cells. By a common tangential maximal segment (CTS) of
the cells z1 and z2 we mean a maximal segment s ∈ m1 which is tangential to the incircles of z1 and z2

simultaneously, i.e. s ∩ B(z1) 6= ∅ and s ∩ B(z2) 6= ∅. Notice that the cells z1 and z2 can have a common
segment which is not a CTS. Thus we write pij as

pij = pij(0) + pij(1) + pij(2),

where for 0 ≤ k ≤ 2,

pij(k) := E

 ∑
(z1,z2)∈Y 2

1 :(c(z1),c(z2))∈i×j
1R(z1)>vρ 1R(z2)>vρ 1(z1, z2 have k CTS)


We prove below that pij(k) = O

(
(log log ρ)2 · log ρ · ρ−2(1+ε)

)
for each k = 0, 1, 2 and 0 < ε≤ 2

π . We begin
with the case k = 0. To do it, we will use two formulas of Stochastic Geometry and Integral Geometry
respectively, namely a Mecke-type formula for STIT tessellations and a Blaschke-Petkantschin type change
of variables. The cases k = 1 and k = 2 will be dealt in a similar way, but also applying Lemmas 3.2 and 3.3,
respectively.

5.2.1 Case k = 0

We rewrite pij(0) in terms of maximal segments (instead of cells) of Y1. This yields

pij(0) =
1

3! · 3!
E

 ∑
s1:3∈m3

1

∑
q1:3∈m3

1\{s1:3}
1R(s1:3)>vρ,R(q1:3)>vρ 1∂Y1∩(Bo(s1:3)∪Bo(q1:3))=∅ 1(c(s1:3),c(q1:3))∈i×j


where the segments s1:3 are pairwise different, and so are the q1:3 too. Thanks to the Mecke-type formula for
STIT tessellations, Theorem 3.1 of [14], there is an ηM > 0, such that

pij(0) ≤ 2ηM
3! · 3!

∫
H6

P ( ∂Y1 ∩ (Bo(H1:3) ∪Bo(H ′1:3)) = ∅ ) 1(c(H1:3),c(H′1:3))∈i×j 1R(H1:3)>R(H′1:3)>vρ dH1:3dH ′1:3.

Here, the inequality is due to the omission of the indicators of the events {H1, H2, H3} ∩ B(q1:3) = ∅
and {H ′1, H ′2, H ′3} ∩ B(s1:3) = ∅. The factor 2 appears because we have added the indicator function
1R(H1:3)>R(H′1:3) , which for a stationary and isotropic tessellation means no loss of generality. The factor

ηM comes from the application of the Mecke-type formula for the different possible arrangements of s1:3 ∈ m3
1

and q1:3 ∈ m3
1. We remark that the Mecke-type formula for maximal segments of a STIT tessellation is

technically much more involved than the respective Mecke formula for a Poisson line tessellation. Here we
omit a detailed derivation of the formula above, as it would require quite a few pages; cf. the proofs in [14].

Now, let ε > 0 be fixed. For H1:3 and H ′1:3 with R(H1:3) > R(H ′1:3) we write B(c1, r1) := B(H1:3) and
B(c2, r2) := B(H ′1:3). We consider two sub-cases. First, if r1 ≥ vρ(1 + ε), we use the fact that

P ( ∂Y1 ∩ (B(c1, r1) ∪B(c2, r2)) = ∅ ) ≤ P ( ∂Y1 ∩B(c1, r1) = ∅ ) = e−2r1 ,

where the last equation follows from (1.2). Second, if r1 < vρ(1 + ε), we use the inequality

P ( ∂Y1 ∩ (B(c1, r1) ∪B(c2, r2)) = ∅ ) ≤ P ( ∂Y1 ∩ (B(c1, r2) ∪B(c2, r2)) = ∅ ) ,
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which follows from the assumption that r1 > r2. Hence, according to Lemma 3.1, there exists a constant
η1 > 0 such that

P ( ∂Y1 ∩ (B(c1, r1) ∪B(c2, r2)) = ∅ ) ≤ η1 e
−2(1+ 2

π )r2 .

Summarizing, there exists a constant η > 0 for which

pij(0) ≤ η (p>εij (0) + p<εij (0)),

where

p>εij (0) :=

∫
H6

e−2R(H1:3)1(c(H1:3),c(H′1:3))∈i×j 1R(H1:3)>R(H′1:3)>vρ 1R(H1:3)≥vρ(1+ε) dH1:3dH ′1:3,

and

p<εij (0) :=

∫
H6

e−2(1+ 2
π )R(H′1:3)1(c(H1:3),c(H′1:3))∈i×j 1vρ(1+ε)>R(H1:3)>R(H′1:3)>vρ dH1:3dH ′1:3.

Now we provide upper bounds for p>εij (0) and p<εij (0).

(i) Upper bound for p>εij (0) We apply a Blaschke-Petkantschin type change of variables (see e.g. Theorem

7.3.2 of [18]). To do it we denote by a(u1:3) the area of the convex hull of u1:3 ∈ (S1)3. This gives

p>εij (0) =

∫
(S1)6

∫
i×j

∫
R2

+

a(u1:3) a(u′1:3) e−2r11r1>r2>vρ 1r1≥vρ(1+ε) dr1dr2dc1dc2σ
⊗3(du1:3)σ⊗3(du′1:3)

≤ η2 a(i)2 vρ e
−2vρ(1+ε),

for some positive constant η2. This, together with (1.5), and the fact that a(i) = O(log log ρ), implies

p>εij (0) = O
(

(log log ρ)2 · log ρ · ρ−2(1+ε)
)
.

(ii) Upper bound for p<εij (0) Again we apply a Blaschke-Petkantschin type change of variables. This
yields

p<εij (0) =

∫
(S1)6

∫
i×j

∫
R2

+

a(u1:3) a(u′1:3) e−2(1+ 2
π )r21vρ(1+ε)>r1>r2>vρ dr1dr2dc1dc2σ

⊗3(du1:3)σ⊗3(du′1:3)

≤ η3 a(i)2 vρ e
−2(1+ 2

π )vρ ,

for some positive constant η3. In the same spirit as above, we get

p<εij (0) = O
(

(log log ρ)2 · log ρ · ρ−2(1+ 2
π )
)
.

Combining the upper bounds for p>εij (0) and for p<εij (0) we obtain for 0 < ε ≤ 2
π that

pij(0) = O
(

(log log ρ)2 · log ρ · ρ−2(1+ε)
)
.
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5.2.2 Case k = 1

Now the calculation of an upper bound for pij(1) will be sketched only, because we proceed in the same spirit
as in the case k = 0.

pij(1) :=

1

3! · 2!
E

 ∑
s1:3∈m3

1

∑
q2:3∈m3

1\{s1:3}
1R(s1:3)>vρ,R(s1,q2:3)>vρ 1∂Y1∩(Bo(s1:3)∪Bo(s1,q2:3))=∅ 1(c(s1:3),c(s1,q2:3))∈i×j

 .
Applying the Mecke-type formula for STIT tessellations, and discussing two sub-cases as above, namely
r1 ≥ vρ(1 + ε) and r1 < vρ(1 + ε), we see that that there is an η > 0 such that

pij(1) ≤ η (p>εij (1) + p<εij (1)),

where

p>εij (1) :=

∫
H5

e−2R(H1:3)1(c(H1:3),c(H1,H′2:3))∈i×j 1vρ<R(H1,H′2:3)<R(H1:3) 1R(H1:3)≥vρ(1+ε) dH1:3dH ′2:3,

and

p<εij (1) :=

∫
H5

e−2(1+ 2
π )R(H1,H

′
2:3)1(c(H1:3),c(H1,H′2:3))∈i×j 1vρ<R(H1,H′2:3)<R(H1:3)<vρ(1+ε) dH1:3dH ′2:3.

Below, we provide upper bounds for p>εij (1) and p<εij (1).

(i) Upper bound for p>εij (1) Because 1R(H1,H′2:3)>vρ ≤ 1, it follows from Fubini’s theorem that

p>εij (1) ≤
∫
H3

e−2R(H1:3)1c(H1:3)∈i 1R(H1:3)≥vρ(1+ε)

(∫
H2

1c(H1,H′2:3)∈j 1R(H1,H′2:3)<R(H1:3) dH ′2:3

)
dH1:3.

Since j is a square with diameter
√

2
√
π ρ

b√ π ρ
log log ρc

, it follows from Lemma 3.2 that for all lines H1, there is a

constant η4 > 0 such that∫
H2

1c(H1,H′2:3)∈j 1R(H1,H′2:3)<R(H1:3) dH ′2:3 ≤ η4 log log ρ.

Thus

p>εij (1) ≤ η4 log log ρ

∫
H3

e−2R(H1:3)1c(H1:3)∈i 1R(H1:3)≥vρ(1+ε) dH1:3

= η5 a(i) log log ρ

∫ ∞
vρ(1+ε)

e−2rdr

= O
(

(log log ρ)2 · ρ−2(1+ε)
)
,

where the second line comes from the Blaschke-Petkantschin type change of variables, and η5 > 0.
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(ii) Upper bound for p<εij (1) This time we write

p<εij (1) ≤
∫
H3

e−2(1+ 2
π )R(H1,H

′
2:3)1c(H1,H′2:3)∈j 1vρ<R(H1,H′2:3)

×
(∫
H2

1c(H1:3)∈i 1R(H1:3)<vρ(1+ε) dH2:3

)
dH1dH ′2:3.

According to Lemma 3.2, we have for some constant η6 > 0∫
H2

1c(H1:3)∈i 1R(H1:3)<vρ(1+ε) dH2:3 ≤ η6 log log ρ.

Thus, for some constant η7 > 0

p<εij (1) ≤ η6 log log ρ

∫
H3

e−2(1+ 2
π )R(H1,H

′
2:3)1c(H1,H′2:3)∈j 1vρ<R(H1,H′2:3) dH1dH ′2:3

= η7 a(j) log log ρ

∫ ∞
vρ

e−2(1+ 2
π )rdr

= O
(

(log log ρ)2 · ρ−2(1+ 2
π )
)
,

where the second line again comes from the Blaschke-Petkantschin type change of variables. Summarizing,
we obtain that pij(1) = O

(
(log log ρ)2 · ρ−2(1+ε)

)
for 0 < ε ≤ 2

π .

5.2.3 Case k = 2

Proceeding now exactly along the same lines as above, we see that there is an η > 0 such that

pij(2) ≤ η (p>εij (2) + p<εij (2)),

where

p>εij (2) :=

∫
H4

e−2R(H1:3)1(c(H1:3),c(H1:2,H′3))∈i×j 1R(H1:3)>R(H1:2,H′3)>vρ 1R(H1:3)≥vρ(1+ε) dH1:3dH ′3,

and

p<εij (2) :=

∫
H4

e−2(1+ 2
π )R(H1:2,H

′
3)1(c(H1:3),c(H1:2,H′3))∈i×j 1vρ(1+ε)>R(H1:3)>R(H1:2,H′3)>vρ dH1:3dH ′3.

(i) Upper bound for p>εij (2) We write

p>εij (2) ≤
∫
H3

e−2R(H1:3)1c(H1:3)∈i 1R(H1:3)≥vρ(1+ε)

(∫
H

1c(H1:2,H′3)∈j 1R(H1:2,H′3)<R(H1:3) dH ′3

)
dH1:3.

Since j is a square with diameter
√

2
√
π ρ

b√ π ρ
log log ρc

, it follows from Lemma 3.3 that for all H1:3, there is a constant

η8 > 0 such that ∫
H

1c(H1:2,H′3)∈j 1R(H1:2,H′3)<R(H1:3) dH ′3 ≤ η8

√
log log ρ.

Proceeding along the same lines as above, we obtain

p>εij (2) = O
(

(log log ρ)
3
2 · ρ−2(1+ε)

)
.
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(ii) Upper bound for p<εij (2) Now

p<εij (2) ≤
∫
H3

e−2(1+ 2
π )R(H1:2,H

′
3)1c(H1:2,H′3)∈j 1vρ<R(H1:2,H′3)

(∫
H

1c(H1:3)∈i 1R(H1:3)<vρ(1+ε) dH3

)
dH1:2dH ′3.

This yields

p<εij (2) = O
(

(log log ρ)
3
2 · ρ−2(1+ 2

π )
)
.

Summarizing, we obtain pij(2) = O
(

(log log ρ)
3
2 · ρ−2(1+ε)

)
for 0 < ε ≤ 2

π .

Now, having upper bounds for pij(k), k = 0, 1, 2, we can complete the proof that b2 converges to 0 as
ρ→∞. Indeed, let ε ∈ (0, 2

π ] and β ∈ (0, 1) be fixed. Let ε′ := 2(1 + ε)− (1 + β). Then

b2 =
∑
i∈V

∑
i 6=j∈S(i,ρβ/2)

pij ≤ |V | · |S(i, ρβ/2)| ·
2∑
k=0

pij(k) = O
(

log log ρ · log ρ · ρ−ε
′
)
.

Since ε′ > 0, this proves that b2 converges to 0 as ρ goes to infinity.

5.3 Proof of the assertion that b3 converges to 0 for ρ→∞
First, we rewrite b3 as a series. To do it, let ρ > ρ0(τ) and let i ∈ V . According to (3.2), we know that∑

j 6∈S(i,ρβ/2) 1Mj>vρ = NC(i)(vρ), where C(i) is defined in (3.5). Now, using the Bayes theorem, elementary
calculations on conditional probabilities yield

b3 =
∑
i∈V

pi

∞∑
k=0

∣∣P (NC(i)(vρ) = k|Mi > vρ
)
− P

(
NC(i)(vρ) = k

)∣∣
≤

(∑
i∈V

pi

)
·

(
sup
i∈V

∞∑
k=0

∣∣P (NC(i)(vρ) = k|Mi > vρ
)
− P

(
NC(i)(vρ) = k

)∣∣) .
Moreover, according to (1.4) and (5.3), we have

∑
i∈V pi = τ . Thus, to prove that b3 converges to 0, it is

sufficient to prove that b′3 converges to 0, where

b′3 := sup
i∈V

∞∑
k=0

∣∣P (NC(i)(vρ) = k|Mi > vρ
)
− P

(
NC(i)(vρ) = k

)∣∣ .
The main idea is to apply Lemmas 3.4 and 3.5. To be in the framework of these lemmas, we intersect the

events appearing in the series with the events {MC(i) ≤ v2
ρ} and {Mi ≤ v2

ρ} respectively. Notice that these
two events occur with high probability. With standard computations, we can prove that for each 4-tuple of
events A,B,C,D, with P (B ∩D ) 6= 0, we have

|P (A|B )−P (A ) | ≤ |P (A ∩ C|B ∩D )− P (A ∩ C )|+ 1

P (B )
(2P (A ∩ Cc )+P (A ∩Dc )+2P (A )P (Dc )).

Applying the above inequality to the events A = {NC(i)(vρ) = k}, B = {Mi > vρ}, C = {MC(i) ≤ v2
ρ}

and D = {Mi ≤ v2
ρ}, we obtain for all i and all k ∈ N0:∣∣P (NC(i)(vρ) = k|Mi > vρ

)
− P

(
NC(i)(vρ) = k

)∣∣ ≤ pk,i + qk,i,
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where

pk,i =
∣∣P ( {NC(i)(vρ) = k} ∩ {MC(i) ≤ v2

ρ}
∣∣ vρ < Mi ≤ v2

ρ

)
− P

(
{NC(i)(vρ) = k} ∩ {MC(i) ≤ v2

ρ}
)∣∣ ,

and

qk,i =
1

P (Mi > vρ )

(
2P
(
{NC(i)(vρ) = k} ∩ {MC(i) > v2

ρ}
)

+ P
(
{NC(i)(vρ) = k} ∩ {Mi > v2

ρ}
)

+ 2P
(
NC(i)(vρ) = k

)
P
(
Mi > v2

ρ

) )
.

Thus, to prove that b′3 converges to 0, we have to prove that supi∈V
∑∞
k=0 pk,i and supi∈V

∑∞
k=0 qk,i converge

to 0. This is done in Subsections 5.3.2 and 5.3.1. We begin with supi∈V
∑∞
k=0 qk,i because it is the simplest

case.

5.3.1 Proof of the assertion that supi∈V
∑∞
k=0 qk,i converges to 0

Roughly, the fact that supi∈V
∑∞
k=0 qk,i converges to 0 comes from the fact that the events {MC(i) ≤ v2

ρ} and
{Mi ≤ v2

ρ} occur with high probability. Let i ∈ V . Summing over k ∈ N0, we have

∞∑
k=0

qk,i =
1

P (Mi > vρ )

(
2P
(
MC(i) > v2

ρ

)
+ 3P

(
Mi > v2

ρ

))
.

Now, analogously to (5.3), we know that

P
(
MC(i) > v2

ρ

)
≤ E

 ∑
j∈C(i)

1Mj>v2ρ

 = γ1a(C(i)) P
(
R(Z) > v2

ρ

)
.

Furthermore, the stationarity of the tessellation yields that P
(
Mi > v2

ρ

)
≤ P

(
MC(i) > v2

ρ

)
for all ρ for which

a(i) ≤ a(C(i)). Thus
∞∑
k=0

qk,i ≤
5P
(
MC(i) > v2

ρ

)
P (Mi > vρ )

≤
5a(C(i))P

(
R(Z) > v2

ρ

)
a(i)P (R(Z) > vρ )

.

Since a(C(i)) ≤ a(Wρ) and a(i) =
a(Wρ)
|V | , we obtain from (3.1) that

∞∑
k=0

qk,i ≤
5πρ

log log ρ

P
(
R(Z) > v2

ρ

)
P (R(Z) > vρ )

.

An application of (1.2) and (1.5) yields

∞∑
k=0

qk,i = O
(

(log log ρ)−1 ρ−
1
2 log ρ+log τ+2

)
.

As the last term does not depend on i ∈ V , this is also an upper bound for supi∈V
∑∞
k=0 qk,i. Obviously

it converges to 0 as ρ→∞.
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5.3.2 Proof of the assertion that supi∈V
∑∞
k=0 pk,i converges to 0

Let i ∈ V be fixed. For each 0 < s < 1, we denote by M
[1−s]
i the maximum of the inradii over all cells

with nucleus in i for a STIT tessellation at time 1− s. When the time is not specified, the underlying STIT
tessellation is at time 1, e.g. Mi denotes the same maximum but this time for a STIT tessellation at time 1,
in accordance with (2.2). Now taking

K =

 ⋃
j∈S(i,ρβ/2)

j

	 S0 and K ′ = i⊕ S0,

it follows from Lemmas 3.4 and 3.5 that for each s ∈ (0, 1),

pk,i ≤ P
(
{NC(i)(vρ) = k} ∩ {MC(i) ≤ v2

ρ}|vρ < Mi ≤ v2
ρ

)
−

P
(
vρ < M

[1−s]
i ≤ v2

ρ

)
P
(
vρ < Mi ≤ v2

ρ

) · P
(
NC(i)(vρ) = k,MC(i) ≤ v2

ρ, S(K,K ′) < s, Ys ∧K ′ = K ′
)

+

∣∣∣∣∣∣
P
(
vρ < M

[1−s]
i ≤ v2

ρ

)
P
(
vρ < Mi ≤ v2

ρ

) − 1

∣∣∣∣∣∣ · P (NC(i)(vρ) = k,MC(i) ≤ v2
ρ

)

+
P
(
vρ < M

[1−s]
i ≤ v2

ρ

)
P
(
vρ < Mi ≤ v2

ρ

) · P
(
{NC(i)(vρ) = k,MC(i) ≤ v2

ρ} ∩ {S(K,K ′) < s, Ys ∧K ′ = K ′}c
)
.

Notice that in the above equation we have considered the sets i and C(i) instead of the sets i◦ and C(i)◦,
which appear in Lemma 3.5. Actually, this does not modify the probability which are considered because a.s.
no incenter of a cell is located at the boundary of i or of C(i) respectively. Now, summing over k ≥ 0 and
using the fact that

∑∞
k=0 P

(
NC(i)(vρ) = k

)
= 1, we have

∞∑
k=0

pk,i ≤ P
(
MC(i) ≤ v2

ρ|vρ < Mi ≤ v2
ρ

)

−
P
(
vρ < M

[1−s]
i ≤ v2

ρ

)
P
(
vρ < Mi ≤ v2

ρ

) · P
(
MC(i) ≤ v2

ρ, S(K,K ′) < s, Ys ∧K ′ = K ′
)

+

∣∣∣∣∣∣
P
(
vρ < M

[1−s]
i ≤ v2

ρ

)
P
(
vρ < Mi ≤ v2

ρ

) − 1

∣∣∣∣∣∣ · P (MC(i) ≤ v2
ρ

)

+
P
(
vρ < M

[1−s]
i ≤ v2

ρ

)
P
(
vρ < Mi ≤ v2

ρ

) · P
(
{MC(i) ≤ v2

ρ} ∩ {S(K,K ′) < s, Ys ∧K ′ = K ′}c
)
.

Bounding the probabilities P
(
MC(i) ≤ v2

ρ|vρ < Mi ≤ v2
ρ

)
and P

(
MC(i) ≤ v2

ρ

)
by 1 respectively, and using

the trivial inequalities

P
(
{MC(i) ≤ v2

ρ} ∩ {S(K,K ′) < s, Ys ∧K ′ = K ′}c
)
≤ P ( {S(K,K ′) < s, Ys ∧K ′ = K ′}c )
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and

P
(
MC(i) ≤ v2

ρ, S(K,K ′) < s, Ys ∧K ′ = K ′
)
≥ P (S(K,K ′) < s, Ys ∧K ′ = K ′ )− P

(
MC(i) > v2

ρ

)
,

we obtain

∞∑
k=0

pk,i ≤ 1−
P
(
vρ < M

[1−s]
i ≤ v2

ρ

)
P
(
vρ < Mi ≤ v2

ρ

) ·
(
P (S(K,K ′) < s, Ys ∧K ′ = K ′ )− P

(
MC(i) > v2

ρ

))

+

∣∣∣∣∣∣
P
(
vρ < M

[1−s]
i ≤ v2

ρ

)
P
(
vρ < Mi ≤ v2

ρ

) − 1

∣∣∣∣∣∣+
P
(
vρ < M

[1−s]
i ≤ v2

ρ

)
P
(
vρ < Mi ≤ v2

ρ

) · P ( {S(K,K ′) < s, Ys ∧K ′ = K ′}c ) .

Analogously to (5.3), and applying (1.2), (1.5), and the fact that a(C(i)) = O (ρ) we obtain that

P
(
MC(i) > v2

ρ

)
≤ E

 ∑
j∈C(i)

1Mj>v2ρ

 = γ1 a(C(i)) P
(
R(Z) > v2

ρ

)
= O(ρ−

1
2 log ρ+log τ+1),

which converges to 0 as ρ goes to infinity. Thus, to prove that
∑∞
k=0 pk,i converges to 0, it is sufficient to

choose s, as a function of ρ, in such a way that the following properties hold:

P
(
vρ < M

[1−s]
i ≤ v2

ρ

)
P
(
vρ < Mi ≤ v2

ρ

) −→
ρ→∞

1 (5.5)

and
P (S(K,K ′) < s, Ys ∧K ′ = K ′ ) −→

ρ→∞
1. (5.6)

To do it, we choose s = ρ−δ with 0 < δ < β/2.

First, we prove (5.5). Analogously to (5.3), for u = 1, 1 − s and k = 1, 2, we have P
(
M

[u]
i > vkρ

)
=

a(i)γue
−2uvkρ , with ρ > ρ0(τ). Since γu = u2

π , this gives

P
(
vρ < M

[1−s]
i ≤ v2

ρ

)
P
(
vρ < Mi ≤ v2

ρ

) =
[1− s]2

(
e−2[1−s]vρ − e−2[1−s]v2ρ

)
e−2vρ − e−2v2ρ

.

This together with the fact that s v2
ρ −→
ρ→∞

0 shows (5.5).

It remains to prove (5.6). To do it, we apply an inequality established in [10]. We first recall the framework

of this paper. Let a be the length of the side of the square (centered at the origin) K =
(⋃

j∈S(i,ρβ/2) j
)
	S0.

It is clear that
a =

√
a(i)(2bρ

β
2 c+ 1)− 2v2

ρ (5.7)

for some constant c. Let f1 = [−a2 ,
a
2 ] × {a2}, f2 = {a2} × [−a2 ,

a
2 ], f3 = −f1 and f4 = −f2 be the sides of

K. Similarly, with the same orientation, we denote by f ′1, f
′
2, f
′
3, f
′
3 the sides of the square (centered at the

origin) K ′ = i⊕ S0. The length of each side of K ′ is

a′ =
√
a(i) + 2v2

ρ. (5.8)
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K

K ′

f ′
1

f1

Figure 1: The sides f1, f ′1 of the squares K, K ′, and the associated trapezoid

Now, let L(K,K ′) := min{Λ([fi|f ′i ]) : i = 1, . . . , 4}, as in equation (13) of [10]. Notice that the quantities
Λ([fi|f ′i ]) appearing in this minimum actually do not depend on i because Λ is invariant under rotation.
Equation (18) of [10] states the following inequality:

P (S(K,K ′) < s, Ys ∧K ′ = K ′ ) ≥ e−sΛ[K′]
(

1− e−sL(K,K′)
)4

.

To calculate L(K,K ′), consider the trapezoid spanned by f1 and f ′1 (see Figure 1). A line H separates f1

and f ′1, if and only if it intersects the two nonparallel sides of the trapezoid. Denote by ` the length of a
diagonal of the trapezoid. The distance between f1 and f ′1 is 1

2 (a−a′). A formula for the measure of all lines
intersecting two planar compact convex sets can be found in [17], p. 33. Applying this to the linear segments
f1, f ′1, we obtain with some elementary geometry that

L(K,K ′) = 2`− (a+ a′) =
√

2
√
a2 + a′2 − (a+ a′) ≥ (

√
2− 1)a− a′.

According to (5.7) and (5.8), this gives

L(K,K ′) ≥ (
√

2− 1)
(√

a(i)(2bρ
β
2 c+ 1)− 2v2

ρ

)
− (
√
a(i) + 2v2

ρ)

=
(

(
√

2− 1)(2bρ
β
2 c+ 1)− 1

)√
a(i)− 2

√
2v2
ρ

≥ 2(
√

2− 1)ρ
β
2 −
√

2− 2
√

2v2
ρ,

where the second inequality comes from the facts that
√
a(i) ≥ 1 (when ρ is sufficiently large) and bρ

β
2 c ≥

ρ
β
2 − 1. Using the fact that

√
2 ≤ (

√
2− 1)ρ

β
2 (for ρ sufficiently large), we get

L(K,K ′) ≥ 2(
√

2− 1)ρ
β
2 − (

√
2− 1)ρ

β
2 − 2

√
2v2
ρ

= (
√

2− 1)ρ
β
2 − 2

√
2v2
ρ.

Since s = ρ−δ with 0 < δ < β/2, we obtain that sL(K,K ′) −→
ρ→∞

∞. Furthermore, sΛ[K ′] = 4
π s a

′, which

converges to 0 as ρ goes to infinity. This shows (5.6). Consequently, b3 converges to 0 as ρ goes to infinity,
which completes the proof of Theorem 1.1.
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6 Concluding remarks

In this section, we discuss some possible extensions of Theorem 1.1. First, in the proof of our main theorem,
it is essential that the considered random tessellation is stationary. Such a condition is standard in Stochastic
Geometry, and is classical in Extreme Value Theory. Another assumption is that our STIT tessellation is
isotropic. This is used in the proof of Lemma 3.1 and in the computation of L(K,K ′) (see p. 22). However,
our results can be extended to non-isotropic STIT tessellations, as long as the directional distribution of the
dividing lines are atomless, and hence no parallel sides occur in the tessellation. The asymptotic behaviour of
the largest order statistics is the same as in Theorem 1.1, especially because (1.2) remains true for stationary
but non-isotropic STIT tessellations. If there are cells with pairs of parallel sides, their incircles must not be
unique, and a different approach to the problem is required.

Our main theorem is given specifically for the two dimensional case with a fixed square-shaped window Wρ

in order to keep our calculations simple. However, Theorem 1.1 remains true when the window is any convex
body with non-empty interior. We conjecture that our results concerning the largest order statistics may be
extended to higher dimensions. The main difficulty for a proof in higher dimensions would be a tremendously
involved case study concerning b2 and the corresponding “common tangential maximal polytopes”.

We now compare our method to the one used in [4]. As mentioned on p. 3, our result is similar to
Theorem 1.1 (ii) of [4]. However, the proof of this theorem is based on the method of moments, which leads
to very technical computations of combinatorics, and does not provide rate of convergence for the Poisson
approximation. On the opposite, our proof based on the Chen-Stein method, is more accurate in the sense
that the rate of convergence can be made explicit. In Theorem 1.1 (i) of [4], the smallest order statistics for
the inradius are also considered. We did not investigate this problem in the context of STIT tessellations
because it relies on a simple adaptation of [4]. The method is similar and is mainly based on the study of
U -statistics, which are investigated in [19].

In order to determine the asymptotic joint distribution of the rank statistics and the location of corres-
ponding incenters, consider the point process ΦWρ

on W1 × R which is defined as

ΦWρ :=
{(
ρ−1/2c(z), 2tR(z)− log ρ

)
: z ∈ Yt, c(z) ∈Wρ

}
.

The normalization of the inradii is motivated by the result (1.7). We conjecture that ΦWρ
converges weakly

for ρ→∞ to a Poisson point process Φ on W1 × R with intensity measure ν given by

ν(B × (u, v]) := E [ #(Φ ∩ (B × (u, v]) ] =
a(B)

t−2π
· (e−u − e−v),

for all 0 < u ≤ v and Borel sets B ⊂ W1. This conjecture cannot directly be deduced from our Theorem
1.1. But we believe that an adaptation of the method we used in our proof would be promising. Actually,
a similar result was already established in Theorem 2 in [3] for random tessellations satisfying a finite range
condition (FRC).
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