Efficient extraction of resonant states in systems with defects - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

Efficient extraction of resonant states in systems with defects

Résumé

We introduce a new numerical method to compute resonances induced by localized defects in crystals. This method solves an integral equation in the defect region to compute analytic continuations of resolvents. Such an approach enables one to express the resonance in terms of a "resonance source", a function that is strictly localized within the defect region. The kernel of the integral equation, to be applied on such a source term, is the Green function of the perfect crystal, which we show can be computed efficiently by a complex deformation of the Brillouin zone, named Brillouin Complex Deformation (BCD), thereby extending to reciprocal space the concept of complex coordinate transformations.
Fichier principal
Vignette du fichier
main (2).pdf (1.68 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03611185 , version 1 (17-03-2022)
hal-03611185 , version 2 (16-09-2022)

Identifiants

Citer

Ivan Duchemin, Luigi Genovese, Eloïse Letournel, Antoine Levitt, Simon Ruget. Efficient extraction of resonant states in systems with defects. 2022. ⟨hal-03611185v2⟩
208 Consultations
278 Téléchargements

Altmetric

Partager

More