FairER: Entity Resolution With Fairness Constraints - Archive ouverte HAL
Communication Dans Un Congrès Année : 2021

FairER: Entity Resolution With Fairness Constraints

Vasilis Efthymiou
  • Fonction : Auteur
Kostas Stefanidis
  • Fonction : Auteur
  • PersonId : 1093840
Evaggelia Pitoura
  • Fonction : Auteur
  • PersonId : 1130316

Résumé

There is an urgent call to detect and prevent "biased data" at the earliest possible stage of the data pipelines used to build automated decision-making systems. In this paper, we are focusing on controlling the data bias in entity resolution (ER) tasks aiming to discover and unify records/descriptions from different data sources that refer to the same real-world entity. We formally define the ER problem with fairness constraints ensuring that all groups of entities have similar chances to be resolved. Then, we introduce FairER, a greedy algorithm for solving this problem for fairness criteria based on equal matching decisions. Our experiments show that FairER achieves similar or higher accuracy against two baseline methods over 7 datasets, while guaranteeing minimal bias.
Fichier principal
Vignette du fichier
cikm2021 (1).pdf (652.19 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03608623 , version 1 (15-03-2022)

Identifiants

Citer

Vasilis Efthymiou, Kostas Stefanidis, Evaggelia Pitoura, Vassilis Christophides. FairER: Entity Resolution With Fairness Constraints. 30th ACM International Conference on Information & Knowledge Management (CIKM '21), Nov 2021, New York, France. ⟨10.1145/3459637.3482105⟩. ⟨hal-03608623⟩
62 Consultations
189 Téléchargements

Altmetric

Partager

More