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ABSTRACT
There is an urgent call to detect and prevent “biased data” at the

earliest possible stage of the data pipelines used to build automated

decision-making systems. In this paper, we are focusing on control-

ling the data bias in entity resolution (ER) tasks aiming to discover

and unify records/descriptions from different data sources that

refer to the same real-world entity. We formally define the ER prob-

lem with fairness constraints ensuring that all groups of entities

have similar chances to be resolved. Then, we introduce FairER, a

greedy algorithm for solving this problem for fairness criteria based

on equal matching decisions. Our experiments show that FairER

achieves similar or higher accuracy against two baseline methods

over 7 datasets, while guaranteeing minimal bias.
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1 INTRODUCTION
Given the widespread adoption of data-driven systems for making

decisions in real life, there is an urgent call for responsible data
management [28]. As a matter of fact, downstream harms to partic-
ular individuals or groups, often blamed to “biased data”1, should
be detected and prevented at the earliest possible stage of data
pipelines used to build automated decision-making systems [13].

In this paper, we focus on controlling the data bias in entity reso-
lution (ER) tasks aiming to discover and unify records/descriptions
from different data sources that refer to the same real-world entity.
ER tasks are typically used to improve data quality by reducing
1
An overloaded term encompassing among others societal and historical, representa-
tion and aggregation aspects [29].

data incompleteness (i.e., missing values), redundancy (i.e., dupli-

cate values) or inconsistency (i.e., conflicting values) [7]. Failing to

address bias in ER tasks may lead to systematic bias that jeopardize

both accuracy and fairness of downstream data analysis [18, 27, 30].

We argue that, in order to mitigate data bias implications, ER

systems should not only maximize accuracy, as in traditional ER,

but also satisfy fairness constraints among the so-called protected
and non-protected groups of entities in their output. Since several

criteria of determining protected groups (e.g., race, gender) and

fairness measures (e.g., equal representation of groups, similar error

rates among groups) have been proposed in the literature [19], the

problem of fairness-aware ER is a broad one. We introduce a general

constraint-based formulation of the problem and then investigate

in depth a specific instance of this formulation.

Recent research has investigated the explainability of entity

matching decisions [2, 8, 26], but controlling and mitigating bias

in ER tasks has not been studied so far. Previous work has focused

exclusively on the assessment of demographic bias in word em-

beddings exploited in named entity recognition [21] and on string

similarity functions in namematching tasks [14]. Fairness-aware ER

addresses discrepancies in the size of the groups in input data (i.e.,

popularity bias), where the majority of resolved entities belongs to

a specific group [20]. To the best of our knowledge, FairER is the

first ER algorithm that satisfies fairness constraints. In summary,

the contributions of this work are:

• We formalize the problem of fairness-aware ER as a sub-

modular optimization problem with cardinality constraints,

which is known to be NP-hard. This definition requires that

the retrieved pairs of entities should maximize a cumula-

tive similarity score, while ensuring fair matching decisions

across different groups of interest.

• We introduce FairER, a greedy algorithm to solve the prob-

lem of fairness-aware ER for fairness criteria based on equal

matching decisions. We prove that FairER provides a 1− 1/𝑒
approximation of the optimal solution.

• We experimentally evaluate FairER against fairness-agnostic

ER and fair ranking methods over 7 datasets, and show that it

consistently achieves similar (or even higher) accuracy, while

guaranteeing minimal bias, with a negligible time overhead.

2 PROBLEM STATEMENT
Next, we define the problem of ER subject to fairness constraints.

Traditional Entity Resolution. Real-world entities are usually
described in one or more sources by sets of attribute-value pairs.

Entity descriptions may be structured in a tabular form (i.e., records)

when stored in relational databases or semi-structured in a graph

format (e.g., subject-predicate-object triples) when stored in knowl-

edge graphs [7]. The objective of an ER algorithm is to discover

https://doi.org/10.1145/3459637.3482105


Figure 1: Top: Sources 𝐸 and 𝐸 ′ with matches. Bottom:
Fairness-agnostic ER, fair, and FairER rankings (numbered).

pairs of descriptions 𝑒, 𝑒 ′ that refer to the same real-world entities,

called matches. For example, in Figure 1 we are interested in form-

ing a team of experts based on some criteria (e.g., reputation and

h-index) described in a developers platform 𝐸 (e.g., Stack Overflow)

and a researchers platform 𝐸 ′ (e.g., Google Scholar). ER tries to find

the matching pairs between 𝐸 and 𝐸 ′, depicted by a connected edge.
Deciding whether a pair of entity descriptions (𝑒, 𝑒 ′) refers to

the same real-world entity relies on a scoring function 𝑠 assessing

the similarity of the attribute values and names used to describe 𝑒

and 𝑒 ′. Scores of entity pairs are at the heart of main formulations

of the ER problem using heuristic rules (e.g., MinoanER [10]), ag-

glomerative clustering (e.g., SiGMa [17]), or binary classification

(e.g., DeepMatcher [23], DeepER [9], and [12]). In the remaining

of this paper, we are focusing on the definition of the core task of

entity matching in unsupervised ER settings which do not require

lots of accurately labeled training data (readers are referred to [11]

for entity blocking, and [31] for entity clustering tasks):

Definition 2.1 (Fairness-agnostic ER). Given a set of candidate

matches𝐶 ⊆ 𝐸 ×𝐸 ′ and a scoring function 𝑠 : 𝐸 ×𝐸 ′ → R, produce
a subset 𝑅 ⊆ 𝐶 of matches that maximizes the cumulative scores:

𝑅 = argmax

𝑅∗⊆𝐶

∑
(𝑒𝑖 ,𝑒′𝑗 ) ∈𝑅∗

𝑠 (𝑒𝑖 , 𝑒 ′𝑗 ).

In fairness-agnostic ER, typically, the matching pairs are ranked

𝑅 =

〈
(𝑒1, 𝑒 ′

1
), . . . , (𝑒𝑘 , 𝑒 ′𝑘 )

〉
according to their scores. Additional

constraints may be imposed to 𝑅 according to specific assumptions

pertaining to the application of an ER task. For example, when

integrating two redundancy-free entity sources 𝐸 and 𝐸 ′, we want
to match each entity from 𝐸 to at most one entity from 𝐸 ′.

The above formulation of the ER problem aims to return the

candidate pairs that are most likely to be true matches according to

their similarity [1, 3], ignoring other qualitative features of those

results, such as fairness or diversity.

Fair Entity Resolution. In this work, we are extending the

typical quality assessment of ER results to also incorporate fairness.

Thus, in a fair ER setting, the results that are retrieved first should

not only be the ones that most likely correspond to matches, but

they should also satisfy a given fairness constraint.

To quantify fairness in ER decisions, we are focusing on equal
decision measures that allow us to examine the allocation of bene-

fits and harms across groups by looking at the decision alone [22].

Group-based fairness definitions place matching entities into dis-

joint groups based on the values of their protected attributes and

ask that all groups receive similar treatment, i.e., they have sim-

ilar chances to be resolved. Specifically, the decision whether a

pair (𝑒, 𝑒 ′) belongs to a protected group or not is assumed to be

given by a Boolean function 𝑝𝑟 : 𝐸 × 𝐸 ′ → {𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒}, based on

whether 𝑒 and/or 𝑒 ′ belong to the protected group. In this work, we

assume that 𝑝𝑟 (𝑒, 𝑒 ′) = 𝑡𝑟𝑢𝑒 , when 𝑒 or 𝑒 ′ belong to the protected

group according to the value of one, or more protected attributes. A

less error-tolerant protected group membership function on pairs

would consider conjunction instead of disjunction. More challenges

regarding this function arise, including handling missing or con-

flicting values, as well as learning it on the fly from the data. We

leave the exploration of the impact of this decision as future work.

Ranked group fairness [5, 16, 32], employed in settings where the

ordering of results is important, requires that a fairness constraint

should be satisfied when considering the results within a given rank

position. In our example, if we want to hire 4 experts, we may not

only want the first 4 results to be matches, but also require that they

equally represent males and females. To introduce a fairness-aware

adaptation of Definition 2.1, we use an abstract fairness criterion 𝐹 ,

and require that the provided solution 𝑅 should satisfy 𝐹 .

Definition 2.2 (Fairness-aware ER). Given a set of candidatematches

𝐶 ⊆ 𝐸 × 𝐸 ′, a scoring function 𝑠 : 𝐸 × 𝐸 ′ → R, and a fairness cri-

terion 𝐹 , produce a ranking of matches 𝑅 ⊆ 𝐶 that for any given

rank position 𝑘 , maximizes the cumulative scores:

𝑅 = argmax

𝑅∗⊆𝐶

∑
(𝑒𝑖 ,𝑒′𝑗 ) ∈𝑅∗

𝑠 (𝑒𝑖 , 𝑒 ′𝑗 )

s.t. 𝑅 [𝑘] satisfies 𝐹,
where 𝑅 [𝑘] are the 𝑘 first results of 𝑅.

In the previous example, 3 out of 4 suggested pairs by traditional

ER are male candidates (Figure 1). A fairness-aware ER algorithm

targeting an equal representation ofmales and females would return

a balanced ranking like the last ranking shown in the figure.

Note that the fairness-aware ER problem of Definition 2.2 is not

the same as the fair top-𝑘 ranking problem [32], since in fairness-

aware ER, the items for which a positive matching decision will

be made, i.e., the subset of candidate matches that are returned

as matches, are not known in advance, but may be dynamically

updated based on previous decisions. For example, a fair ranking

𝑅 [4] =
〈
(𝑒5, 𝑒 ′

6
), (𝑒5, 𝑒 ′

5
), (𝑒3, 𝑒 ′

3
), (𝑒4, 𝑒 ′

4
)
〉
(with two male and two

female candidates) may not be a valid ER result, since returning

both (𝑒5, 𝑒 ′
6
) and (𝑒5, 𝑒 ′

5
) violates the redundancy-free assumption.

3 FAIRER ALGORITHM
The fairness-aware ER problem introduced in Definition 2.2 is gen-

eral enough to encompass different settings with respect to fairness

criteria and matching constraints. In this section, we present a sim-

ple, yet highly efficient method, FairER, to solve an instance of this

problem for a specific setting, as described next.

Inspired by the ranked group fairness constraint [32], we de-

note with |𝑅𝑝 |/𝑘 (resp. |𝑅𝑛 |/𝑘) the ratio of protected (resp. non-

protected) group members in the first 𝑘 results 𝑅 [𝑘], and require

that the protected and non-protected groups are equally represented

in 𝑅 [𝑘], i.e., that |𝑅𝑝 |/𝑘 ≈ |𝑅𝑛 |/𝑘 . In other words, our ranked group

fairness criterion 𝐹 is defined as | ( |𝑅𝑝 |/𝑘) − (|𝑅𝑛 |/𝑘) | = 𝜖∗, where



𝜖∗ is the smallest possible ratio difference for a given 𝑘 . As shown

later, 𝜖∗ = 0 when 𝑘 is even, and 𝜖∗ = 1/𝑘 , when 𝑘 is odd.

As the base matching decision, we build on top of a simple algo-

rithm (similar to existing approaches [4, 17]) that places candidate

pairs in a priority queue (PQ) in descending scores and at each iter-

ation, returns the top pair as a match. Then, it updates the queue

by removing pairs containing descriptions that have been already

matched, to respect the one-to-one matching constraint, and pro-

ceeds until the queue becomes empty. In FairER (Algorithm 1), we

extend this method to use not only one, but two priority queues,

one (𝑄𝑝 ) for the protected group and one (𝑄𝑛) for the non-protected

group (Lines 6-10). The matching algorithm proceeds as usual, but

in each iteration for one of the priority queues only (Lines 13-16),

until a match is found (Lines 17-21). Then, it proceeds to the next

non-empty priority queue (Lines 22-23), until 𝑘 matches have been

found (early termination - optional), or all queues are empty. The

time complexity of Algorithm 1 is 𝑂 ( |𝐶 |𝑙𝑜𝑔|𝐶 |).

Algorithm 1: FairER
Input: Candidate matches𝐶 = (𝐸, 𝐸′, 𝑠) , 𝑘 (optional)

Output: Ranked matches 𝑅 [𝑘 ] =
〈
(𝑒1, 𝑒′

1
), . . . , (𝑒𝑘 , 𝑒′𝑘 )

〉
1 𝑅 ← ∅
2 𝑀 ← ∅ // matched nodes from 𝐸

3 𝑀′ ← ∅ // matched nodes from 𝐸′

4 𝑄𝑝 ← ∅ // PQ for protected group in desc. score

5 𝑄𝑛 ← ∅ // PQ for non-protected group in desc. score

6 foreach 𝑐 = (𝑒, 𝑒′, 𝑠 (𝑒, 𝑒′)) ∈ 𝐶 do
7 if pr(c) then // returns True if 𝑐 is in protected group

8 𝑄𝑝 .𝑝𝑢𝑡 (𝑐)
9 else
10 𝑄𝑛 .𝑝𝑢𝑡 (𝑐)
11 𝑛𝑒𝑥𝑡𝑃𝑟 ← 𝑇𝑟𝑢𝑒 // should the next pair be protected?

12 while (𝑄𝑝 ≠ ∅ or𝑄𝑛 ≠ ∅) and ( |𝑅 | < 𝑘) do
13 if nextPr then
14 𝑐 ← 𝑄𝑝 .𝑝𝑜𝑝 () // the top protected pair

15 else
16 𝑐 ← 𝑄𝑛 .𝑝𝑜𝑝 () // the top non-protected pair

17 if 𝑐.𝑒 ∈ 𝑀 or 𝑐.𝑒′ ∈ 𝑀′ then // 𝑒 or 𝑒′ are matched
18 continue

19 𝑅.𝑎𝑝𝑝𝑒𝑛𝑑 ( ⟨(𝑐.𝑒, 𝑐.𝑒′) ⟩)
20 𝑀 ← 𝑀 ∪ {𝑐.𝑒 }
21 𝑀′ ← 𝑀′ ∪ {𝑐.𝑒′ }
22 if (𝑛𝑒𝑥𝑡𝑃𝑟 and𝑄𝑛 ≠ ∅) or (¬𝑛𝑒𝑥𝑡𝑃𝑟 and𝑄𝑝 ≠ ∅) then
23 𝑛𝑒𝑥𝑡𝑃𝑟 ← ¬𝑛𝑒𝑥𝑡𝑃𝑟 // swap queues

24 return 𝑅

Proposition 3.1. Algorithm 1 is a 1 - 1/e approximation to the
problem of Definition 2.2, for 𝐹 defined as | ( |𝑅𝑝 |/𝑘) − (|𝑅𝑛 |/𝑘) | = 𝜖∗.

Proof (Sketch). Solving the problem of Definition 2.2 reduces

to maximizing a monotone submodular function with cardinality

constraints (𝑘), which is an NP-hard problem [24]. The greedy

approach of Algorithm 1 is a known 1 - 1/e approximation to this

problem, noting that the next pair to be added on each iteration, is

guaranteed to satisfy 𝐹 . We omit the detailed proof due to limited

space. We focus on the satisfaction of the fairness criterion 𝐹 .

Table 1: Datasets and Protected Group Criteria.

Dataset Pr. group criterion |𝑅∗𝑝 |, |𝑅∗𝑛 |
BeerAdvo-RateBeer (D1) “Red” in beer name 5, 9

iTunes-Amazon (D2) “Dance” in genre 11, 16

Fodors-Zagats (D3) type = “asian” 3, 19

DBLP-ACM (D4) female last author 39, 405

DBLP-Scholar (D5) “vldb j” in venue 80, 990

Amazon-Google (D6) “Microsoft” in manufacturer 12, 222

Walmart-Amazon (D7) category = “printers” 11, 182

Let 𝑅𝑝 ⊆ 𝑅 [𝑘] be the protected group matches and 𝑅𝑛 ⊆ 𝑅 [𝑘]
be the non-protected group matches, where |𝑅𝑝 | + |𝑅𝑛 | = 𝑘 , and

let | ( |𝑅𝑝 |/𝑘) − (|𝑅𝑛 |/𝑘) | ≥ 𝜖∗ for all possible solutions 𝑅∗. For a
constant𝑘 , this absolute difference is minimizedwhen | ( |𝑅𝑝 |−|𝑅𝑛 |) |
is minimized. It is straightforward to show that when 𝑘 is even, this

equation is minimized for |𝑅𝑝 | = |𝑅𝑛 | = 𝑘/2, so 𝜖∗ = 0, while, when

𝑘 is odd, it is minimized for | ( |𝑅𝑝 | − |𝑅𝑛 |) | = 1, so 𝜖∗ = 1/𝑘 . This
holds in the general case when 𝑘 ≤ 𝑚𝑖𝑛( |𝑄𝑝 |, |𝑄𝑛 |). Otherwise, 𝜖∗
is bigger. By construction, Algorithm 1 produces 𝑅𝑝 and 𝑅𝑛 , such

that |𝑅𝑝 | = |𝑅𝑛 | = 𝑘/2, when 𝑘 is even, and |𝑅𝑝 | = (𝑘 + 1)/2 =

|𝑅𝑛 | +1, when 𝑘 is odd. In both cases, | ( |𝑅𝑝 |/𝑘)− (|𝑅𝑛 |/𝑘) | = 𝜖∗. □

4 EXPERIMENTS
In this section, we present results comparing FairER to two baseline

methods over 7 publicly available datasets.

Color-blind baseline. This baseline is the classic paradigm of

fairness-agnostic ER, solving Problem 2.1, in which the candidate

matches are forwarded to matching and matches are returned ignor-

ing fairness. We use it as a baseline for comparing fairness-aware

to fairness-agnostic ER methods.

Fa*ir baseline. In this baseline, the candidate matches are

first ranked in descending score order and then re-ranked (using

FA*IR [32]) to respect the fairness constraints. The re-ranked list is

then forwarded to matching to produce the final output of ER.

The problem with Fa*ir baseline is that it guarantees that the

input to matching is fair, but the output may not be. On the other

hand, it is straightforward to prove that FairER guarantees maximal

fairness until no more protected group matches exist to be returned,

i.e., until the priority queue for the protected group becomes empty.

Setup. Our open-source framework
2
uses DeepMatcher

3
(10

epochs and defaults for the other parameters, yielding similar scores

to [23]) as the scoring function 𝑠 , and FA*IR
4
(for Fa*ir baseline).

Datasets. All datasets are publicly available from DeepMatcher.

We list them in Table 1, along with the criteria we employed for

defining the protected group in each dataset, and the number of

ground truth matches in the protected 𝑅∗𝑝 and non-protected 𝑅∗𝑛
groups. For detecting gender from authors’ first names in DBLP-

ACM dataset, we used the gender-guesser library
5
. This was not

possible in DBLP-Scholar dataset, where first names are abbreviated.

We note that those criteria are orthogonal to our approach and they

need not be personal data, as we show in our examples.

2
https://github.com/vefthym/fairER

3
https://github.com/anhaidgroup/deepmatcher

4
https://github.com/MilkaLichtblau/FA-IR_Ranking

5
https://github.com/lead-ratings/gender-guesser

https://github.com/vefthym/fairER
https://github.com/anhaidgroup/deepmatcher
https://github.com/MilkaLichtblau/FA-IR_Ranking
https://github.com/lead-ratings/gender-guesser


Figure 2: Average scores for prot. and non-prot. groups.

Measures. We evaluate the suggested method and baselines

with respect to accuracy and fairness at the top-𝑘 positions of the

returned results, for 𝑘 ∈ {5, 10, 15, 20}. The employed measures are

the following. Accuracy@𝑘 : out of 𝑘 returned matches, how many

are correct (i.e., in the ground truth of known matches)? Bias@𝑘 :

following the fairness constraint 𝐹 defined earlier as | ( |𝑅𝑝 |/𝑘) −
(|𝑅𝑛 |/𝑘) | = 𝜖∗, we report the values of ( |𝑅𝑝 |/𝑘) − (|𝑅𝑛 |/𝑘), with
negative values denoting favoring the non-protected group, zero

implying no bias, and positive values favoring the protected group.

Scores of protected vs non-protected. Figure 2 shows the

average scores for protected and non-protected groups, also pre-

senting the scores only for known (from the ground truth) matches.

As expected, matches have much higher average scores than non-

matches. We observe that in all cases, matches belonging to the

protected group (aka protected matches), shown in grey color, have

lower average match scores than matches belonging to the non-

protected group (aka non-protected matches), shown in blue color.

The same observation holds when comparing protected (black) vs

non-protected (orange) pairs (including matches and non-matches).

Accuracy. Table 2 shows the accuracy@𝑘 results for all three

methods. We observe that FairER yields lower accuracy than the

other methods in very few occasions, while, surprisingly, it yields

better accuracy than even the color-blind method in a few cases

(Walmart-Amazon 𝑘 = 5, Amazon-Google 𝑘 = 10, DBLP-Scholar

𝑘 = 15). Note that accuracy may change if a different matching

algorithm than the one described in Section 3 is employed.

Table 2: Accuracy results.

Method D1 D2 D3 D4 D5 D6 D7
Accuracy@5

Color-blind 1 1 1 1 1 0.8 0

Fa*ir 1 1 1 1 1 1 0

FairER 1 1 1 1 1 0.8 0.4
Accuracy@10

Color-blind 0.9 1 1 1 1 0.7 0.4
Fa*ir 0.9 1 1 1 1 0.6 0.4
FairER 0.9 1 0.8 1 1 0.8 0.4

Accuracy@15

Color-blind 0.73 1 1 1 0.93 0.73 0.6
Fa*ir 0.73 1 0.93 1 0.93 0.71 0.6
FairER 0.66 1 0.66 1 1 0.73 0.33

Accuracy@20

Color-blind 0.65 1 1 1 0.95 0.75 0.65
Fa*ir 0.65 1 0.85 1 0.95 0.72 0.6

FairER 0.65 0.95 0.65 1 0.95 0.7 0.4

Table 3: Fairness (bias@𝑘) results. [-1,0): favoring non-
protected, 0: no bias, (0,1]: favoring protected. Theminimum
possible |bias@𝑘 | values 𝜖∗ are also presented.

Method D1 D2 D3 D4 D5 D6 D7
𝑘 = 5 (𝜖∗ = 0.2)

Color-blind -0.6 -0.6 -1 -1 -1 -1 -0.6

Fa*ir -0.6 -0.6 -0.6 -0.6 -0.6 -0.6 -0.6

FairER 0.2 0.2 0.2 0.2 0.2 0.2 0.2
𝑘 = 10 (𝜖∗ = 0)

Color-blind -0.6 -0.4 -1 -0.6 -0.8 -0.8 -0.8

Fa*ir -0.6 -0.4 -0.6 -0.6 -0.6 -0.6 -0.6

FairER 0 0 0 0 0 0 0
𝑘 = 15 (𝜖∗ = 0.07)

Color-blind -0.6 -0.33 -0.73 -0.6 -0.87 -0.87 -0.87

Fa*ir -0.47 -0.33 -0.47 -0.47 -0.47 -0.57 -0.47

FairER 0.07 0.07 0.07 0.07 0.07 0.07 0.07
𝑘 = 20 (𝜖∗ = 0)

Color-blind -0.4 -0.3 -0.7 -0.6 -0.9 -0.9 -0.9

Fa*ir -0.4 -0.3 -0.4 -0.4 -0.4 -0.56 -0.4

FairER 0 0 0 0 0 0 0

Fairness Scores. The bias@𝑘 scores are presented in Table 3,

with numbers closer to 0 denoting better fairness, while -1 and 1

denote the extreme cases of favoring the non-protected and pro-

tected groups, respectively. Note that in those reported numbers,

we omit the absolute operation when considering the difference

( |𝑅𝑝 |/𝑘) − (|𝑅𝑛 |/𝑘), just for illustration purposes, to differentiate

between favoring the protected or the non-protected group, which

is otherwise not important in the targeted fairness criterion 𝐹 .

The results confirm that FairER constantly provides the best

possible bias@𝑘 scores 𝜖∗ in all datasets. In cases where a perfect

balance is not achievable, i.e., when 𝑘 is odd, we note that FairER

prefers to favor the protected group (positive bias@𝑘 scores). This

can be reversed by initializing𝑛𝑒𝑥𝑡𝑃𝑟 as false (Line 11, Algorithm 1).

5 CONCLUSION
In this paper, we have introduced the problem of fairness-aware ER

and proposed a general constraint-based formulation. We have pre-

sented FairER, an algorithm that solves an instance of this problem

for the case of fairness constraints expressed in terms of the cardi-

nalities of the protected and non-protected groups in the output.

We are currently working on extending our Algorithm 1 to more

complex protected group criteria, such as handling missing and

conflicting values for the protected attributes. As a future work, we

plan to study mitigation of bias in other ER tasks, such as clustering

and fusion. We additionally plan to study the impact of alternative

fairness measures on ER, given that several competing definitions

have been proposed in the literature that imply different, possibly

mutually exclusive, understandings of fairness [6, 15, 22, 25].
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