Internal Addresses of the Mandelbrot Set and Galois Groups of Polynomials - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2017

Internal Addresses of the Mandelbrot Set and Galois Groups of Polynomials

Dierk Schleicher
  • Fonction : Auteur
  • PersonId : 1129677

Résumé

We describe an interesting interplay between symbolic dynamics, the structure of the Mandelbrot set, permutations of periodic points achieved by analytic continuation, and Galois groups of certain polynomials. Internal addresses are a convenient and efficient way of describing the combinatorial structure of the Mandelbrot set, and of giving geometric meaning to the ubiquitous kneading sequences in human-readable form (Sects. 3 and 4). A simple extension, angled internal addresses, distinguishes combinatorial classes of the Mandelbrot set and in particular distinguishes hyperbolic components in a concise and dynamically meaningful way. This combinatorial description of the Mandelbrot set makes it possible to derive existence theorems for certain kneading sequences and internal addresses in the Mandelbrot set (Sect. 6) and to give an explicit description of the associated parameters. These in turn help to establish some algebraic results about permutations of periodic points and to determine Galois groups of certain polynomials (Sect. 7). Through internal addresses, various areas of mathematics are thus related in this manuscript, including symbolic dynamics and permutations, combinatorics of the Mandelbrot set, and Galois groups.
Fichier principal
Vignette du fichier
9411238v2.pdf (455.75 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03600806 , version 1 (17-07-2023)

Identifiants

Citer

Dierk Schleicher. Internal Addresses of the Mandelbrot Set and Galois Groups of Polynomials. 2023. ⟨hal-03600806⟩
52 Consultations
36 Téléchargements

Altmetric

Partager

More