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INTERNAL ADDRESSES OF THE MANDELBROT SET
AND GALOIS GROUPS OF POLYNOMIALS

VERSION OF March 10, 2022

DIERK SCHLEICHER

Abstract. We describe an interesting interplay between symbolic dynamics, the
structure of the Mandelbrot set, permutations of periodic points achieved by analytic
continuation, and Galois groups of certain polynomials.

In the early 1990’s, Devaney asked the question: how can you tell where in the
Mandelbrot set a given external ray lands, without having Adrien Douady at your
side? We provide an answer to this question in terms of internal addresses: these are
a convenient and efficient way of describing the combinatorial structure of the Man-
delbrot set, and of giving geometric meaning to the ubiquitous kneading sequences in
human-readable form (Section 2). A simple extension, angled internal addresses, dis-
tinguishes combinatorial classes of the Mandelbrot set and in particular distinguishes
hyperbolic components in a concise and dynamically meaningful way.

This combinatorial description of the Mandelbrot set makes it possible to derive
quite easily existence theorems for certain kneading sequences and internal addresses
in the Mandelbrot set (Section 4); these in turn help to establish some algebraic
results about permutations of periodic points and to determine Galois groups of
certain polynomials (Section 5). Many results in this paper were first announced in
[LS].
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2 DIERK SCHLEICHER

1. Internal Addresses of the Mandelbrot Set

The combinatorial structure of the Mandelbrot set has been studied by many people,
notably in terms of quadratic minor laminations by Thurston [T], pinched disks by
Douady [D2], or orbit portraits by Milnor [M2]. All of these results are modeled
on parameter rays of the Mandelbrot set at periodic angles, as well as their landing
properties. Internal addresses are a natural way to distinguish the components in the
complement of parameter rays of bounded periods.

Parameter rays of the Mandelbrot set are defined as follows. By [DH], the Man-
delbrot set is compact, connected and full, i.e., there is a conformal isomorphism
Φ: (C \M) → (C \ D); it can be normalized so that Φ(c)/c → 1 as c → ∞. The
parameter ray of M at angle ϑ ∈ R/Z is then Φ−1(e2πiϑ(1,∞)). If R(ϑ) and R(ϑ′) land
at a common point z, we call R(ϑ) ∪ R(ϑ′) ∪ {z} a parameter ray pair and denote it
P (ϑ, ϑ′). Then C \ P (ϑ, ϑ′) has two components, and we say that P (ϑ, ϑ′) separates
two points or sets if they are in different components. If a polynomial pc(z) = z2 + c
has connected Julia set, then there are analogous definitions of dynamic rays Rc(ϑ)
and dynamic ray pairs Pc(ϑ, ϑ

′). General background can be found in Milnor [M1].
The most important properties of parameter rays at periodic angles are collected in

the following well known theorem; see [DH], [M2], [Sch2].

1.1. Theorem (Properties of Periodic Parameter Ray Pairs)
For every n ≥ 1, there are finitely many parameter rays of period up to n. They land
in pairs so that any two parameter rays of equal period are separated by a parameter
ray of lower period. Every parameter ray pair P (ϑ, ϑ′) of period n lands at the root of
a hyperbolic component W of period n, and the root of every hyperbolic component of
period n is the landing point of exactly two parameter rays, both of period n.

The ray pair P (ϑ, ϑ′) partitions C into two open components; let WW be the com-
ponent not containing the origin: this is the wake of W and contains W . This wake
is the locus of parameters c ∈ C for which the dynamic rays Rc(ϑ) and Rc(ϑ

′) land
together at a repelling periodic point; the ray pair Pc(ϑ, ϑ

′) is necessarily characteristic.

Here a dynamic ray pair is characteristic if it separates the critical value from the
rays Rc(2

kϑ) and Rc(2
kϑ′) for all k ≥ 1 (except of course from those on the ray pair

Pc(ϑ, ϑ
′) itself).

Every angle ϑ ∈ S1 := R/Z has an associated kneading sequence ν(ϑ) = ν1ν2ν3 . . . ,
defined as the itinerary of ϑ (under angle doubling) on the unit circle S1 with respect
to the partition S1 \{ϑ/2, (ϑ+ 1)/2}, so that νk = 1 if 2k−1ϑ ∈ (ϑ/2, (ϑ+ 1)/2), νk = 0

if 2k−1ϑ ∈ ((ϑ+1)/2, ϑ/2) = S1\ [ϑ/2, (ϑ+1)/2] and νk = ? if 2k−1ϑ ∈ {ϑ/2, (ϑ+1)/2}.
If ϑ is non-periodic, then ν(ϑ) is a sequence over {0, 1}. If ϑ is periodic of exact period
n, then ν(ϑ) also has period n so that the first n− 1 entries are in {0, 1} and the n-th
entry is ?; such ν(ϑ) are called ?-periodic. The partition is such that every ν(ϑ) starts
with 1 (unless ϑ = 0).
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The parameter rays at periodic angles of periods up to n partition C into finitely
many components. This partition has interesting symbolic dynamic properties, com-
pare Figure 1 and Lemma 1.2: if two parameter rays R(ϑ1) and R(ϑ2) are in the
same component, then the kneading sequences ν(ϑ1) and ν(ϑ2) associated to ϑ1 and
ϑ2 coincide at least for n entries. The combinatorics of these partitions, and thus the
combinatorial structure of the Mandelbrot set, can conveniently be described in terms
of internal addresses, which are “human-readable” recodings of kneading sequences;
see below.
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1100

1100
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1001

1000

Figure 1. Left: sketch of the 10 parameter rays of period up to 4 in the
Mandelbrot set; these partition the complex plane into 11 components.
In each component, the first 4 entries of the kneading sequences ν(ϑ) for
arbitrary parameter rays R(ϑ) are constant. Right: the same parameter
ray pairs sketched symbolically, and the first 4 entries in the kneading
sequences drawn in.

1.2. Lemma (Parameter Ray Pairs and Kneading Sequences)
If two parameter rays R(ϑ) and R(ϑ′) are not separated by a ray pair of period at most
n, then ϑ and ϑ′ have kneading sequences which coincide for at least n entries (provided
neither ϑ nor ϑ′ are periodic of period n or less).

If R(ϑ) and R(ϑ′) with ϑ < ϑ′ form a ray pair, then ν(ϑ) = ν(ϑ′) =: ν?. If in
addition both angles are periodic with exact period n, then ν? is ?-periodic of period n,
we have

lim
ϕ↗ϑ

ν(ϕ) = lim
ϕ↘ϑ′

ν(ϕ) and lim
ϕ↘ϑ

ν(ϕ) = lim
ϕ↗ϑ′

ν(ϕ) ,

and both limits are periodic with period n or dividing n so that their first difference is
exactly at the n-th position.
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Proof. This result is at the heart of [LS], but not explicitly spelled out there (compare
[LS, Observation 3.3 and Proposition 5.2]). As ϑ varies in S1, the n-th entry in its
kneading sequence changes exactly at angles which are periodic of period dividing n.

Consider two external angles ϑ < ϑ′ which are not separated by any ray pair of
period at most n, and which are not periodic of period up to n (it is quite possible that
(ϑ, ϑ′) contains a periodic angle of period up to n, as long as the other angle of the
same ray pair is also contained in (ϑ, ϑ′)). Then for every k ≤ n, the parameter rays
of period k with angles ϕ ∈ (ϑ, ϑ′) must land in pairs (Theorem 1.1), so the number
of such rays is even. Therefore, as the angle varies from ϑ to ϑ′, the k-th entry in the
kneading sequence of ϑ changes an even number of times, and the kneading sequences
of ϑ and ϑ′ have identical k-th entries. This settles the first claim, and it shows that
ν(ϑ) = ν(ϑ′) if R(ϑ) and R(ϑ′) land together and neither ϑ nor ϑ′ are periodic.

However, if R(ϑ) and R(ϑ′) land together and one of the two angles is periodic, then
both angles are periodic with the same exact period, say n (Theorem 1.1). In this
case, the kneading sequences ν(ϑ) and ν(ϑ′) are ?-periodic with exact period n, so
they coincide as soon as their first n − 1 entries coincide; this case is covered by the
first claim.

It is quite easy to see that limits like limϕ↘ϑ ν(ϕ) exist; moreover, if ϑ is non-periodic,
then the limit equals ν(ϑ). If ϑ is periodic of exact period n, then limϕ↘ϑ ν(ϕ) and
limϕ↘ϑ ν(ϕ) are periodic of period n or dividing n, they contain no ?, and their first
n− 1 entries coincide with those of ν(ϑ). Clearly, limϕ↘ϑ ν(ϕ) and limϕ↗ϑ ν(ϕ) differ
exactly at positions which are multiplies of n.

Finally, limϕ↘ϑ ν(ϕ) = limϕ↗ϑ′ ν(ϕ) because for sufficiently small ε, the parameter
rays R(ϑ + ε) and R(ϑ′ − ε) are not separated by a ray pair of period at most n, so
the limits must be equal. 2

The following should be taken as an algorithmic definition of internal addresses in
the Mandelbrot set. It is the original definition of internal addresses from [LS] (except
that in [LS], it was applied to hyperbolic components and Misiurewicz-Thurston points,
but this makes no difference: see the remark below).

1.3. Algorithm (Internal Address in the Mandelbrot Set)
Given a parameter c ∈ C, the internal address of c in the Mandelbrot set is a strictly
increasing finite or infinite sequence of integers. It is defined as follows:

seed: the internal address starts with S0 = 1 and the ray pair P (0, 1);
inductive step: if S0 → . . . → Sk is an initial segment of the internal ad-

dress of c, where Sk corresponds to a ray pair P (ϑk, ϑ
′
k) of period Sk, then

let P (ϑk+1, ϑ
′
k+1) be the ray pair of least period which separates P (ϑk, ϑ

′
k) from

c (or for which c ∈ P (ϑk+1, ϑ
′
k+1)); let Sk+1 be the common period of ϑk+1 and

ϑ′k+1. The internal address of c then continues as S0 → . . .→ Sk → Sk+1 with
the ray pair P (ϑk+1, ϑ

′
k+1).
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This continues for every k ≥ 1 unless there is a finite k so that P (ϑk, ϑ
′
k) is not

separated from c by any periodic ray pair (in particular if c ∈ P (ϑk, ϑ
′
k)).

Remark. The internal address is only the sequence S0 → . . .→ Sk → . . . of periods;
it does not contain the ray pairs used in the construction. The ray pair P (ϑk+1, ϑ

′
k+1)

of lowest period is always unique by Lavaurs’ Lemma (see Theorem 1.1).
The internal address of c ∈ M can be viewed as a road description for the way

from the origin to c in the Mandelbrot set: at any intermediate place, the internal
address describes the most important landmark on the remaining way to c; see Figure 1.
Landmarks are hyperbolic components (or equivalently the periodic parameter rays
landing at their roots, see Theorem 1.1), and hyperbolic components are the more
important the lower their periods are. The road description starts with the most
important landmark: the component of period 1, and inductively continues with the
period of the component of lowest period on the remaining way.

Different hyperbolic components (or combinatorial classes) are not distinguished
completely by their internal addresses; the remaining ambiguity has a combinatorial
interpretation and will be removed by angled internal addresses : see Theorem 1.10.

We can give an analogous definition of internal addresses in dynamic planes.

1.4. Definition (Internal Address in Julia Set)
Consider a polynomial pc for which all periodic dynamic rays land and let Kc be the
filled-in Julia set. For a point z ∈ Kc, the internal address of z is defined as follows,
in analogy to Algorithm 1.3:

seed: the internal address starts with S0 = 1 and the ray pair Pc(0, 1);
inductive step: if S0 → . . .→ Sk is an initial segment of the internal address of
z, where Sk corresponds to a dynamic ray pair Pc(ϑk, ϑ

′
k) of period Sk, then let

Pc(ϑk+1, ϑ
′
k+1) be the dynamic ray pair of least period which separates Pc(ϑk, ϑ

′
k)

from z (or for which z ∈ Pc(ϑk+1, ϑ
′
k+1)); let Sk+1 be the common period of ϑk+1

and ϑ′k+1. The internal address of z then continues as S0 → . . .→ Sk → Sk+1.1

This continues for every k ≥ 1 unless there is a finite k so that Pc(ϑk, ϑ
′
k) is not

separated from z by any periodic ray pair.

Every kneading sequence has an associated internal address as follows:

1.5. Definition (Internal Address and Kneading Sequence)
Given a kneading sequence ν with initial entry 1, it has the following associated internal
address 1 → S1 → . . . → Sk → . . . : we start with S0 = 1 and ν0 = 1. Then define
recursively Sk+1 as the position of the first difference between ν and νk, and let νSk+1

1If several dynamic ray pairs of equal period Sk+1 separate Pc(ϑk, ϑ′
k) from z, take the one which

minimizes |ϑ′
k+1−ϑk+1|. (There is an analog to Lavaurs’ Lemma in dynamical planes which says that

all candidate ray pairs have to land at the same periodic point; this is not hard to prove, but we do
not need it here.)
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be the periodic continuation of the first Sk+1 entries in ν (if ν is periodic or period Sk,
then the internal address is finite and stops with entry Sk).

Observe that this definition is algorithmic. It can be inverted so as to assign to any
finite or infinite strictly increasing sequence starting with 1 (viewed as internal address)
a kneading sequence consisting of entries 0 and 1 and starting with 1.

For a ?-periodic kneading sequence ν of exact period n, we define A(ν) and A(ν)
as the two sequences in which every ? is replaced consistently by 0 or consistently
by 1, chosen so that the internal address of A(ν) contains the entry n, while the
internal address of A(ν) does not. It turns out that A(ν) has exact period n, while the
exact period of A(ν) equals or divides n [BKS, Proposition 5.16 and independently
Lemma 19.2]. The sequences A(ν) and A(ν) are called the upper and lower periodic
kneading sequences associated to ν.

The point of the various algorithmic definitions of internal addresses is of course the
following.

1.6. Proposition (Equal Internal Addresses)
(1) For every c ∈ C so that all periodic dynamic rays of pc land, the internal address in
parameter space equals the internal address of the critical value of c in the dynamical
plane of pc.

(2) Let P (ϑk, ϑ
′
k) be the ray pairs from Algorithm 1.3, let Sk be their periods and

let νk be the common kneading sequence of ϑk and ϑ′k. Then each νk is a ?-periodic
kneading sequence of period Sk so that

lim
ϕ↘ϑk

ν(ϕ) = lim
ϕ↗ϑ′k

ν(ϕ) = A(νk) and lim
ϕ↗ϑk

ν(ϕ) = lim
ϕ↘ϑ′k

ν(ϕ) = A(νk) .

(3) The first Sk entries in A(νk) coincide with those of νk+1 and, if c ∈ R(ϑ), with
the first Sk entries of ν(ϑ).

(4) For every ϑ ∈ S1, the internal address of any parameter c ∈ R(ϑ) in Algo-
rithm 1.3 is the same as the internal address associated to the kneading sequence of ϑ
from Definition 1.5.

Proof. The first statement is simply a reformulation of Theorem 1.1 about the cor-
respondence of parameter ray pairs and characteristic dynamic ray pairs: all we need
to observe is that the internal address of the critical value in the Julia set uses only
characteristic dynamic ray pairs; this follows directly from the definition of “charac-
teristic”.

We prove the second statement by induction, starting with the ray pair P (ϑ0, ϑ
′
0)

with ϑ0 = 0, ϑ′0 = 1 and S0 = 1; both angles ϑ0 and ϑ′0 have kneading sequence ν0 = ?
and A(ν0) = 1.

For the inductive step, suppose that P (ϑk, ϑ
′
k) is a ray pair of period Sk with ϑk < ϑ′k,

ν(ϑk) = ν(ϑ′k) = νk and limϕ↘ϑk ν(ϕ) = limϕ↗ϑ′k ν(ϕ) = A(νk), and c is not separated
from P (ϑk, ϑ

′
k) by a ray pair of period Sk or less.
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As in Algorithm 1.3, let P (ϑk+1, ϑ
′
k+1) be a ray pair of lowest period, say Sk+1, which

separates P (ϑk, ϑ
′
k) from c (or which contains c); then ϑk < ϑk+1 < ϑ′k+1 < ϑ′k. We

have Sk+1 > Sk by construction, and the ray pair P (ϑk+1, ϑ
′
k+1) is unique by Lavaurs’

Lemma. Since R(ϑk) and R(ϑk+1) are not separated by a ray pair of period Sk+1 or
less, it follows that the first Sk+1 entries in limϕ↘ϑk ν(ϕ) = A(νk) and in limϕ↗ϑk+1

ν(ϕ)
are equal (the same holds for limϕ↗ϑ′k ν(ϕ) = A(νk) and limϕ↘ϑ′k+1

ν(ϕ)).

Now we show that limϕ↗ϑk+1
ν(ϕ) = limϕ↘ϑ′k+1

ν(ϕ) = A(νk+1); the first equality

is Lemma 1.2. The internal address associated to ν(ϑk + ε) has no entries in {Sk +
1, . . . , Sk+1} provided ε > 0 is sufficiently small (again Lemma 1.2). The internal
address associated to ν(ϑk+1 − ε) can then have no entry in {Sk + 1, . . . , Sk+1} either,
for small ε (or R(ϑk) and R(ϑk+1) would have to be separated by a ray pair of period at
most Sk+1). Thus limϕ↗ϑk+1

ν(ϕ) = A(νk+1). The other limiting kneading sequences
limϕ↘ϑk+1

ν(ϕ) and limϕ↗ϑ′k+1
ν(ϕ) must then be equal to A(νk+1).

Claim (3) follows because neither P (ϑk+1, ϑ
′
k+1) nor c are separated from P (ϑk, ϑ

′
k)

by a ray pair of period Sk or less.
We prove Claim (4) again by induction. If c ∈ R(ϑ), assume by induction that

the internal address of ν(ϑ) starts with 1 → . . . → Sk and ϑk < ϑ < ϑ′k; then ν(ϑ)
coincides with A(νk) for at least Sk entries. The ray pair of least period separating
R(ϑk) and R(ϑ) is P (ϑk+1, ϑ

′
k+1), so the first difference between A(νk) and ν(ϑ) occurs

at position Sk+1. Hence the internal address of ν(ϑ) as in Definition 1.5 continues as
1 → . . . → Sk → Sk+1 and we have ϑk+1 < ϑ < ϑ′k+1 as required to maintain the
induction. 2

The previous proof also shows the following useful observation.

1.7. Corollary (Intermediate Ray Pair of Lowest Period)
Let P (ϑ1, ϑ

′
1) and P (ϑ2, ϑ

′
2) be two parameter ray pairs (not necessarily at periodic

angles) and suppose that P (ϑ1, ϑ
′
1) separates P (ϑ2, ϑ

′
2) from the origin. If the limits

limϕ↗ϑ2 ν(ϕ) and limϕ↘ϑ1 ν(ϕ) do not differ, then the two ray pairs P (ϑ1, ϑ
′
1) and

P (ϑ2, ϑ
′
2) are not separated by any periodic ray pair. If the limits do differ, say at

position n for the first time, then both ray pairs are separated by a unique periodic ray
pair P (ϑ, ϑ′) of period n (but not by ray pairs of lower period); the first n − 1 entries
in ν(ϑ) = ν(ϑ′) coincide with those of limϕ↗ϑ2 ν(ϕ) and limϕ↘ϑ1 ν(ϕ).

Proof. Let n be the position of the first difference in limϕ↘ϑ1 ν(ϕ) and limϕ↗ϑ2 ν(ϕ).
Then the number of periodic angles of period dividing n in (ϑ1, ϑ2) is odd (because only
at these angles, the n-th entry in the kneading sequence changes). Since parameter
rays at period dividing n land in pairs, there is at least one parameter ray pair at period
dividing n which is part of a parameter ray pair separating P (ϑ1, ϑ

′
1) and P (ϑ2, ϑ

′
2).

If P (ϑ1, ϑ
′
1) and P (ϑ2, ϑ

′
2) are separated by a parameter ray pair of period less than

n, let n′ be the least such period. By Lavaurs’ Lemma, there would be a single such
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parameter ray pair of period n′, and it follows n′ = n. The remaining claims follow in
a similar way. 2

Most internal address are infinite; exceptions are related to hyperbolic components
as follows.

1.8. Corollary (Finite Internal Address)
The internal address of c ∈M is finite if and only if there is a hyperbolic component W
with c ∈ W . More precisely, if c ∈ W but c is not the root of a hyperbolic component
other than W , then the internal address of c terminates with the period of W (if c is
the root of a hyperbolic component W ′ 6= W , then the internal address of c terminates
with the period of W ′).

For a non-periodic external angle ϑ ∈ S1, the internal address of R(ϑ) is finite if and
only if R(ϑ) lands on the boundary of a hyperbolic component W .

Proof. Consider a parameter ray R(ϑ) with finite internal address and let n be the
last entry in this internal address. Then there is a parameter ray pair P (ϑ, ϑ′) of period
n which separates R(ϑ) from the origin, and no periodic parameter ray pair separates
R(ϑ) from P (ϑ, ϑ′). The ray pair P (ϑ, ϑ′) bounds the wake of a hyperbolic component
W and lands at the root of W , so R(ϑ) is in the wake of W (or on its boundary) but
not in one of its subwakes. Every such parameter ray lands on the boundary of W ; see
[HY] or [BKS, Corollary 9.13]. The converse is clear.

The statements about c ∈M follow in a similar way, using the fact that the limb of
W is the union of W and its sublimbs at rational internal angles; see [HY] or [BKS,
Theorem 9.12]. 2

Remark. The previous result shows (through the topology of the Mandelbrot set)
that non-periodic external angles can generate periodic kneading sequences which have
finite internal addresses. Of course there are periodic kneading sequences which have
infinite internal addresses; but these are never generated by external angles [BKS,
Lemma 14.6].

For a hyperbolic component W , we have many different ways of associating an
internal address to it:

(1) using Algorithm 1.3 within the plane of the Mandelbrot set;
(2) taking a parameter ray R(ϑ) landing at the root of W and then Algorithm 1.3

for this parameter ray;
(3) taking a parameter ray R(ϑ′) at an irrational angle landing at a boundary point

of W (as in Corollary 1.8) and then again Algorithm 1.3 for this parameter ray;
(4) taking a parameter ray R(ϑ) or R(ϑ′) as in (2) or (3) and then using the inter-

nal address associated to the kneading sequence of ϑ or ϑ′; see Definition 1.5.
The periodic angle ϑ generates a ?-periodic kneading sequence, while the non-
periodic angle ϑ′ generates a periodic kneading sequence without ?;
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(5) for every c ∈ W , we have the internal address of the critical value in the Julia
set from Definition 1.4;

(6) specifically if c is the center of W , then the critical orbit is periodic and pc has
a Hubbard tree in the original sense of Douady and Hubbard [DH], so we can
use all definitions from [BKS, Proposition 6.8].

All these internal addresses are of course the same: this is obvious for the first three;
the next two definitions agree with the first ones by Proposition 1.6 (4) and (1), and
the last two agree by [BKS, Proposition 6.8].

1.9. Definition (Angled Internal Address)
For a parameter c ∈ C, the angled internal address is the sequence

(S0)p0/q0 → (S1)p1/q1 → . . .→ (Sk)pk/qk → . . .

where S0 → S1 → . . .→ Sk → . . . is the internal address of c as in Algorithm 1.3 and
the angles pk/qk are defined as follows: for k ≥ 0, let P (ϑk, ϑ

′
k) be the parameter ray

pair associated to the entry Sk in the internal address of c; then the landing point of
P (ϑk, ϑ

′
k) is the root of a hyperbolic component Wk of period Sk. The angle pk/qk is

defined such that c is contained in the closure of the pk/qk-subwake of Wk. If the internal
address of c is finite and terminates with an entry Sk (which happens if and only if c
is not contained in the closure of any subwake of Wk), then the angled internal address
of c is also finite and terminates with the same entry Sk without angle: (S0)p0/q0 →
(S1)p1/q1 → . . .→ (Sk−1)pk−1/qk−1

→ (Sk).

This definition is illustrated in Figure 2. The main point in this definition is that
it distinguishes different points in the Mandelbrot set. More precisely, angled internal
addresses distinguish combinatorial classes: a combinatorial class is a maximal subset
of M so that no two of its points can be separated by a parameter ray pair at periodic
angles [Sch2, Section 8].

1.10. Theorem (Completeness of Angled Internal Addresses)
If two parameters in M have the same angled internal address, then they belong to the
same combinatorial class. In particular, if two hyperbolic parameters in M have the
same angled internal address, then they belong to the same hyperbolic component.

We postpone the proof of this theorem and of subsequent results to Section 3 and
first discuss some interesting consequences.

2. The Geometry of Internal Addresses

Now we turn to Devaney’s question: how can you tell where in the Mandelbrot set a
given external ray lands, without having Adrien Douady at your side? Angled internal
addresses provide a convenient answer. We already know how to turn an external angle
into an internal address; now we turn it into an angled internal address.
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1/2 1/2 2/5

Figure 2. Angled internal addresses for various hyperbolic components
in M.

It turns out that the internal address without angles completely determines the
denominators of any associated angled internal address, but it says nothing about the
numerators.

2.1. Lemma (Estimates on Denominators in Internal Address)
We have Sk+1/Sk ≤ qk < Sk+1/Sk + 2; moreover, qk = Sk+1/Sk whenever the latter is
an integer.

If Sk+1 is a multiple of Sk, then the component of period Sk+1 is a bifurcation from
that of period Sk.

Now we give a precise formula for qk. Recall that every internal address has an
associated kneading sequence (see Definition 1.5). For every kneading sequence ν =
ν1ν2ν3 . . . we define an associated function ρν as follows: for r ≥ 1, let

ρν(r) := min{k > r : νk 6= νk−r} .
The ρν-orbit of r is denoted orbρν (r). We usually write ρ for ρν .
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2.2. Lemma (Denominators in Angled Internal Address)
In an angled internal address (S0)p0/q0 → . . . → (Sk)pk/qk → (Sk+1)pk+1/qk+1

. . . , the
denominator qk in the bifurcation angle is uniquely determined by the internal address
S0 → . . . → Sk → Sk+1 . . . as follows: let ν be the kneading sequence associated
to the internal address and let ρ be the associated function as just described. Let
r ∈ {1, 2, . . . , Sk} be congruent to Sk+1 modulo Sk. Then

qk :=

{
Sk+1−r
Sk

+ 1 if Sk ∈ orbρ(r) ,
Sk+1−r
Sk

+ 2 if Sk /∈ orbρ(r) .

While the internal address completely specifies the denominators in any correspond-
ing angled internal address, it says says nothing about the numerators: of course, not all
internal addresses are realized in the Mandelbrot set (not all are (complex) admissible;
see [BKS, Sections 5 and 14]), but this is independent of the numerators.

2.3. Theorem (Independence of Numerators in Angled Int. Address)
If an angled internal address describes a point in the Mandelbrot set, then the numer-
ators pk can be changed arbitrarily (coprime to qk) and the modified angled internal
address still describes a point in the Mandelbrot set.

In other words, for every hyperbolic component there is a natural bijection between
combinatorial classes of the p/q-sublimb and p′/q-sublimb, for every q ≥ 2 and all
p, p′ coprime to q. This bijection would give rise to a homeomorphism between these
sublimbs if the Mandelbrot set was locally connected. Unlike other homeomorphisms
constructed by surgery as in Branner and Fagella [BF] or Riedl [Ri], this homeomor-
phism preserves periods of hyperbolic components.

Here is a way to find the numerators pk from an external angle.

2.4. Lemma (Numerators in Angled Internal Address)
Suppose the external angle ϑ has angled internal address (S0)p0/q0 → . . .→ (Sk)pk/qk →
(Sk+1)pk+1/qk+1

. . . . In order to find the numerator pk, consider the qk − 1 angles ϑ,

2Skϑ, 22Skϑ, . . . , 2(qk−2)Skϑ. Then pk is the number of these angles that do not exceed
ϑ.

If ϑ is periodic, then it is the angle of one of the two parameter rays landing at the
root of a hyperbolic component. Here is a way to tell which of the two rays it is.

2.5. Lemma (Left or Right Ray)
Let R(ϑ) and R(ϑ′) be the two parameter rays landing at the root of a hyperbolic com-
ponent W of period n ≥ 2, and suppose that ϑ < ϑ′. Let b and b′ be the n-th entries in
the binary expansions of ϑ and ϑ′. Then

• if the kneading sequence of W has n-th entry 0, then b = 1 and b′ = 0;
• if the kneading sequence of W has n-th entry 1, then b = 0 and b′ = 1.
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For example, the hyperbolic component with internal address 11/3 → 31/2 → 4 has
kneading sequence 1100, and the parameter ray R(4/15) lands at its root. The binary
expansion of 4/15 is 0.0100. The 4-th entries in the kneading sequence and in the
binary expansion of 4/15 are 0 and 0, so the second ray landing together with R(4/15)
has angle ϑ < 4/15 (indeed, the second ray is R(3/15)).

We define the width of the wake of a hyperbolic component W as |W | := |ϑ′ − ϑ|,
where P (ϑ, ϑ′) is the parameter ray pair landing at the root of W . If W has period n,
then the width of the p/q-subwake of W equals

|Wp/q| = |W |(2n − 1)2/(2qn − 1) ; (1)

see [BKS, Proposition 9.34].
The following result complements the interpretation of internal addresses as road

descriptions by saying that whenever the path from the origin to a parameter c ∈ M

branches off from the main road, an entry in the internal address is generated: the way
to most parameters c ∈M traverses infinitely many hyperbolic components, but most
of them are traversed “straight on” and left into the 1/2-limb.

2.6. Proposition (Sublimbs Other Than 1/2 in Internal Address)
If a parameter c ∈ C is contained in the subwake of a hyperbolic component W at
internal angle other than 1/2, then W occurs in the internal address of c. More pre-
cisely, the period of W occurs in the internal address, and the truncation of the angled
internal address of c up to this period describes exactly the component W .

Proof. Let n be the period of W . If W does not occur in the internal address
of c, then the internal address of c must have an entry n′ < n corresponding to a
hyperbolic component W ′ in the wake of W . Denoting the width of W ′ by |W ′|, we have
|W ′| ≥ 1/(2n

′−1). By (1), the width of the p/q-subwake of W is |W |(2n−1)2/(2qn−1),
so we must have

1/(2n
′ − 1) ≤ |W |(2n − 1)2/(2qn − 1) < (2n − 1)2/(2qn − 1)

or 2qn − 1 < (2n
′ − 1)(2n − 1)2 < (2n − 1)3 < 23n − 1, hence q < 3. 2

The internal address of a parameter c also says whether or not this parameter is
renormalizable:

2.7. Proposition (Internal Address and Renormalization)
Let c ∈M be a parameter with internal address (S0)p0/q0 → . . .→ (Sk)pk/qk . . . .

• c is simply renormalizable of period n if and only if there is a k with Sk = n
and n|Sk′ for k′ ≥ k;
• c is crossed renormalizable of period n if and only if there is an m strictly

dividing n so that Sk = m for an appropriate k and all Sk′ with k′ > k are
proper multiples of n (in particular, n does not occur in the internal address).
In this case, the crossing point of the little Julia sets has period m.
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We can also describe combinatorially whether any given parameter rays R(ϑ) and
R(ϑ′) can land at the same point in M: a necessary condition is that they have the
same angled internal address. If ν(ϑ) = ν(ϑ′) is periodic, the both rays land on the
boundary of the same hyperbolic component. Otherwise, both rays accumulate at the
same combinatorial class. As soon as it is known that this combinatorial class con-
sists of a single point (which would imply that M was locally connected at that point
[Sch2]), then both rays land at the same point.

3. Proofs about Internal Addresses

Now we give the proofs of the results stated so far; most of them go back to [LS].
Many of the proofs are based on the concept of long internal addresses, which show
that even though internal addresses themselves are a compact road description, they
encode refinements to arbitrary detail. Parameter ray pairs have a partial order as
follows: P (ϑ1, ϑ

′
1) < P (ϑ2, ϑ

′
2) iff P (ϑ1, ϑ

′
1) separates P (ϑ2, ϑ

′
2) from the origin c = 0,

or equivalently from c = 1/4, the landing point of the ray pair P (0, 1). It will be
convenient to say P (0, 1) < P (ϑ, ϑ′) for every ray pair P (ϑ, ϑ′) 6= P (0, 1). For every
parameter c ∈ C, the set of parameter ray pairs separating c from the origin is totally
ordered (by definition, this set always includes the pair P (0, 1) as its minimum). A
similar partial order can be defined for dynamic ray pairs for every c ∈M.

3.1. Definition (Long Internal Address in the Mandelbrot Set)
For a parameter ray c ∈ C, consider the set of periodic parameter ray pairs which
separate c from the origin, totally ordered as described above; the long internal address
of c is the collection of periods of these ray pairs with the same total order.

The long internal address always starts with the entry 1, and it is usually infinite
and not well-ordered. For most c ∈ C, many periods appear several times on the long
internal address (which means that several ray pairs of equal period separate c from
the origin).

One useful feature of internal addresses is that they completely encode the associated
long internal addresses. The following proposition is in fact algorithmic, as its proof
shows.

3.2. Proposition (Long Internal Address Encoded in Internal Address)
Any internal address completely encodes the associated long internal address.

Proof. The internal address is a strictly increasing (finite or infinite) sequence of
integers, each of which comes with an associated ?-periodic kneading sequence. If it is
the internal address of some c ∈ C, then each entry in the internal address represents
a parameter ray pair with this period. Corollary 1.7 describes the least period of a
periodic parameter ray pair which separates any two given parameter ray pairs, and it
also describes the kneading sequence of the ray pair of least period. This allows us to
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inductively find the periods of all parameter ray pairs of given maximal periods which
separate c from the origin, together with the order and kneading sequences of these
ray pairs, and in the limit determines the long internal address. 2

Remark. Of course, it makes perfect sense to speak of an angled long internal address,
which is a long internal address in which all entries (except the last, if there is a
last entry) are decorated with the bifurcation angles of the sublimb containing the
parameter associated with this address. All entries with angles different from 1/2 are
already contained in the “short” internal address by Proposition 2.6, so the angled
internal address completely encodes the angled long internal address.

Proof of Theorem 1.10 (Completeness of angled internal addresses).
Since combinatorial classes are based upon periodic parameter ray pairs, it suffices
to prove the claim for periodic ray pairs and thus for hyperbolic components. If the
claim is false, then there is a least period Sk for which there are two different hyper-
bolic components W and W ′ of period Sk that share the same angled internal address
(S1)p1/q1 → . . . → (Sk−1)pk−1/qk−1

→ Sk. By minimality of Sk, the ray pair of period
Sk−1 is the same in both internal addresses.

By the Branch Theorem (see [DH] or [Sch2, Theorem 3.1]), there are three possi-
bilities: either (1) W is contained in the wake of W ′ (or vice versa), or (2) there is a
hyperbolic component W∗ so that W and W ′ are in two different of its sublimbs, or
(3) there is a Misiurewicz-Thurston point c∗ so that W and W ′ are in two different of
its sublimbs.

(1) In the first case, there must by a parameter ray pair of period less than Sk
separating W and W ′ by Lavaurs’ Lemma. This ray pair would have to occur in the
internal address of W ′ (between entries Sk−1 and Sk) but not of W , and this is a
contradiction.

(2) The second possibility is handled by angled internal addresses: at least one of
W or W ′ must be contained in a sublimb of W∗ other than the 1/2-sublimb, so by
Proposition 2.6, W∗ must occur in the internal address, and the angles at W∗ in the
angled internal address distinguish W and W ′.

(3) The case of a Misiurewicz-Thurston c∗ point needs more attention. The param-
eter c∗ is the landing point of k ≥ 3 parameter rays R(ϑ1) . . .R(ϑk) at preperiodic
angles.

By Proposition 3.2, W and W ′ have the same long internal address, and by mini-
mality of Sk there is no hyperbolic component W ∗ of period less than Sk in a sublimb
of c∗ so that W ⊂ WW ∗ .

Let P (ϑ, ϑ′) be the parameter ray pair landing at the root of W and let c be the center
of W . In the dynamics of pc, there is a characteristic preperiodic point w which is the
landing point of the dynamic rays Rc(ϑ1), . . .Rc(ϑK) (the definition of characteristic
preperiodic points is in analogy to the definition of characteristic periodic points after
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Theorem 1.1; the existence of the characteristic preperiodic point w is well known (“The
Correspondence Theorem”); see e.g., [BKS, Theorem 9.4] or [Sch2, Theorem 2.1]). We
use the Hubbard tree Tc of pc in the original sense of Douady and Hubbard [DH]. Let
I ⊂ Tc be the arc connecting w to c.

If the restriction p◦Skc |I is not injective, then let n ≤ Sk be maximal so that p
◦(n−1)
c |I

is injective. There is a sub-arc I ′ ⊂ I starting at w so that p◦nc |I′ is injective and p◦nc (I ′)
connects p◦nc (w) with c. If n = Sk then I ′ = I because c is an endpoint of p◦nc (I), a
contradiction; thus n < Sk. Since w is characteristic, this implies that p◦nc (I ′) ⊃ I ′, so
there is a fixed point z of p◦nc on I ′. If z is not characteristic, then the characteristic
point on the orbit of z is between z and c. In any case, we have a hyperbolic component
W ∗ of period n < Sk in a sublimb of c∗ so that W ⊂ WW ∗ (again by Theorem 1.1),
and this is a contradiction.

It follows that the restriction p◦Skc |I is injective. There is a unique component of
C \ (Rc(2

Skϑ1) ∪ · · · ∪ Rc(2
Skϑk) ∪ {p◦Skc (w)}) that contains p◦Skc (I): it is the com-

ponent containing c and the dynamic ray pair Pc(ϑ, ϑ
′), and thus also the dynamic

rays Rc(ϑ1), . . . , Rc(ϑk), so this component is uniquely specified by the external an-
gles of c∗. But by injectivity of p◦Skc |I , this also uniquely specifies the component of
C \ (Rc(ϑ1)∪ · · · ∪Rc(ϑk)∪ {z}) that must contain I and hence c. In other words, the
subwake of c∗ containing W (and, by symmetry, W ′) is uniquely specified. 2

Proof of Lemma 2.1 (Estimates on Denominators). The angled internal ad-
dress (S0)p0/q0 → (S1)p1/q1 → . . . → (Sk)pk/qk → (Sk+1)pk+1/qk+1

. . . , when truncated
at periods Sk, describes a sequence of hyperbolic components Wk of periods Sk. If
Wk+1 is contained in the pk/qk-sublimb of Wk, then we have Sk+1 ≤ qkSk (otherwise an
entry qkSk would be generated in the internal address); thus qk ≥ Sk+1/Sk. The other
inequality follows from (1): the width of the wake of Wk+1 cannot exceed the width of
the pk/qk-subwake of Wk, so 1/(2Sk+1 − 1) ≤ (2Sk − 1)2/(2qkSk − 1) or

2qkSk − 1 ≤ (2Sk+1 − 1)(2Sk − 1)2 < 2Sk+1+2Sk − 1 ,

hence Sk+1 > (qk − 2)Sk or qk < Sk+1/Sk + 2.
It remains to show that whenever Sk+1/Sk is an integer, it equals qk: there are

associated parameter ray pairs P (ϑk, ϑ
′
k) of period Sk and P (ϑk+1, ϑ

′
k+1) of period Sk+1,

and the limiting kneading sequences limϕ↘ϑk ν(ϕ) and limϕ↗ϑk+1
ν(ϕ) are periodic of

period Sk and Sk+1; both can be viewed as being periodic of period Sk+1. Since
they correspond to adjacent entries in the internal address, these ray pairs cannot be
separated by a ray pair of period up to Sk+1, so both limiting kneading sequences are
equal. Therefore, Corollary 1.7 implies that the two ray pairs are not separated by any
periodic parameter ray pair. If Wk+1 was not a bifurcation from Wk, then it would
have to be in some subwake of Wk whose boundary would be some ray pair separating
P (ϑk, ϑ

′
k) from P (ϑk+1, ϑ

′
k+1); this is not the case. So let pk/qk be the bifurcation angle

from Wk to Wk+1; then the corresponding periods satisfy Sk+1 = qkSk as claimed. 2
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In the following lemma, we use the function ρν as defined before Lemma 2.2.

3.3. Lemma (Intermediate Ray Pair of Lowest Period)
Let P (ϑk, ϑ

′
k) and P (ϑk+1, ϑ

′
k+1) be two periodic parameter ray pairs with periods Sk <

Sk+1 and suppose that P (ϑk, ϑ
′
k) separates P (ϑk+1, ϑ

′
k+1) from the origin. Write Sk+1 =

aSk+r with r ∈ {1, . . . , Sk}. Let S be the least period of a ray pair separating P (ϑk, ϑ
′
k)

from P (ϑk+1, ϑ
′
k+1). If Sk+1 < S ≤ (a + 1)Sk, then S = aSk + ρν(r), where ν is any

kneading sequence that has the same initial Sk entries as ν(ϑk+1) = ν(ϑ′k+1).

Proof. Let B and R denote the initial blocks inA(ν(ϑk)) = A(ν(ϑ′k)) consisting of the
first Sk or r entries, respectively. Then A(ν(ϑk)) = B. Since S > Sk+1, Corollary 1.7
implies A(ν(ϑk+1)) = BaR. Therefore, S is the position of the first difference between
B and BaR, and S − aSk is the position of the first difference between B and RBa.
Since S ≤ (a + 1)Sk, this difference occurs among the first Sk symbols, and these are
specified by B and RB. Since R is the initial segment of B of length r, S− aSk equals
ρν(r) for any sequence ν that starts with B. 2

Proof of Lemma 2.2 (Finding denominators). The internal address (without
angles) uniquely determines the long internal address by Proposition 3.2. The entry Sk
occurs in the internal address and the subsequent entry in the long internal address is
qkSk, so the denominators are uniquely encoded (and depend only on the qkSk initial
entries in the kneading sequence). Recall the bound Sk+1 ≤ qkSk < Sk+1 + 2Sk from
Lemma 2.1.

Write again Sk+1 = aSk + r with r ∈ {1, . . . , Sk}. If r = Sk, then Sk+1 is divisible by
Sk and qk = Sk+1/Sk by Lemma 2.1, and this is what our formula predicts. Otherwise,
we have qk ∈ {a + 1, a + 2}. Below, we will find the lowest period S ′ between Sk and
Sk+1, then the lowest period S ′′ between Sk and S ′, and so on (of course, the “between”
refers to the order of the associated ray pairs). This procedure must eventually reach
the bifurcating period qkSk. If qkSk = (a+1)Sk, then one of the periods S ′, S ′′,. . . must
eventually equal (a + 1)Sk. If not, the sequence S ′, S ′′, . . . skips (a + 1)Sk, and then
necessarily qkSk = (a+ 2)Sk.

We can use Lemma 3.3 for this purpose: we have S ′ = aSk + ρν(r), then S ′′ =
aSk + ρν(ρν(r)) etc. until the entries reach or exceed aSk + Sk: if the entries reach
aSk + Sk, then qk = a+ 1; if not, then qk > a+ 1, and the only choice is qk = a+ 2. 2

Proof of Theorem 2.3 (Numerators arbitrary). We prove a stronger state-
ment: given a hyperbolic component W of period n, then we can combinatorially
determine for any s′ > 1 how many components of period up to s′ are contained in the
wake WW , how the wakes of all these components are nested, and what the widths of
their wakes are; all we need to know about W are the width of its wake and its internal
address (without angles). In particular, these data encode how the internal address of
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the component W can be continued within M. This proves the theorem (and it also
shows that the width of the wake of W is determined by the internal address of W ).

For any period s, the number of periodic angles of period s or dividing s within any
interval of S1 of length δ is either bδ/(2s−1)c or dδ/(2s−1)e (the closest integers above
and below δ/(2s−1)). If the interval of length δ is the wake of a hyperbolic component,
then the corresponding parameter rays land in pairs, and the correct number of angles
is the unique even integer among bδ/(2s−1)c and dδ/(2s−1)e. This argument uniquely
determines the exact number of hyperbolic components of any period within any wake
of given width.

There is a unique component Ws of lowest period s, say, in WW (if there were two
such components, then this would imply the existence of at least one parameter ray of
period less than s and thus of a component of period less than s). The width ofWWs is
exactly 1/(2s− 1) (this is the minimal possible width, and greater widths would imply
the existence of a component with period less than s).

Now suppose we know the number of components of periods up to s′ within the wake
WW , together with the widths of all their wakes and how these wakes are nested. The
wake boundaries of period up to s′ decompose WW into finitely many components.
Some of these components are wakes; the others are complements of wakes within
other wakes. We can uniquely determine the number of components of period s′ + 1
within each of these wakes (using the widths of these wakes), and then also within
each complementary component outside of some of the wakes (simply by calculating
differences). Each wake and each complementary component can contain at most one
component of period s′+ 1 by Theorem 1.10. The long internal addresses tell us which
wakes of period s′ + 1 contain which other wakes, and from this we can determine the
widths of the wakes of period s′ + 1. This provides all information for period s′ + 1,
and this way we can continue inductively and prove the claimed statement.

Starting with the unique component of period 1, it follows that the width of a wake
WW is determined uniquely by the internal address of W . 2

Proof of Lemma 2.4 (Finding numerators). We only need to find the numerator
pk if qk ≥ 3. Let Wk be the unique hyperbolic component with angled internal address
(S0)p0/q0 → . . .→ (Sk) and let P (ϑk, ϑ

′
k) be the ray pair bounding its wake WWk

. Let
W ′
k be the component with angled internal address (S0)p0/q0 → . . .→ (Sk)pk/qk → qkSk;

it is an immediate bifurcation from Wk.
By Theorem 1.1, every c ∈ WWk

has a repelling periodic point zc which is the landing
point of the characteristic dynamic ray pair Pc(ϑk, ϑ

′
k); we find it convenient to describe

our proof in such a dynamic plane, even though the result is purely combinatorial. Let
Θ be the set of angles of rays landing at zc; this is the same for all c ∈ WWk

. Especially
if c ∈ W ′

k, it is well known and easy to see that Θ contains exactly qk elements, the first
return map of zc permutes the corresponding rays transitively and their combinatorial
rotation number is pk/qk. These rays disconnect C into qk sectors which can be labelled
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V0, V1, . . . , Vqk−1 so that the first return map of zc sends Vj homeomorphically onto Vj+1

for j = 1, 2, . . . , qk − 2, and so that V1 contains the critical value and V0 contains the
critical point and the ray Rc(0). Finally, under the first return map of zc, points in V0

near zc map into V1, and points in Vqk−1 near zc map into V0. The number of sectors
between V0 and V1 in the counterclockwise cyclic order at zc is then pk − 1, where pk
is the numerator in the combinatorial rotation number. These statements can also be
proved directly for all c ∈ WWk

using the defining property of characteristic ray pairs.
Now suppose the dynamic ray Rc(ϑ) contains the critical value or lands at it. Then

Rc(ϑ) ∈ V1, andRc(2
(j−1)Skϑ) ∈ Vj for j = 1, 2, . . . , qk−1. Counting the sectors between

V0 and V1 means counting the rays Rc(ϑ), Rc(2
Skϑ), . . . , Rc(2

(qk−2)Skϑ) in these sectors,
and this means counting the angles ϑ, 2Skϑ, . . . , 2(qk−2)Sk in (0, ϑ). The numerator pk
exceeds this number by one, and this equals the number of angles ϑ, 2Skϑ, . . . , 2(qk−2)Sk

in (0, ϑ]. 2

Proof of Lemma 2.5 (Left or right ray). The n-th entry in the kneading
sequence of ν(ϑ) is determined by the position of the angle 2n−1ϑ ∈ {ϑ/2, (ϑ + 1)/2}.
The n-th entry in the kneading sequence of W equals the n-th entry in the kneading
sequence of ϑ̃ for ϑ̃ slightly greater than ϑ (for ϑ′, we use an angle ϑ̃′ slightly smaller

than ϑ̃); this is 1 if and only if 2n−1ϑ = ϑ/2 and 0 otherwise. But 2n−1ϑ = ϑ/2 implies
2n−1ϑ ∈ (0, 1/2), hence b = 0, while 2n−1ϑ = (ϑ + 1)/2 implies 2n−1ϑ ∈ (1/2, 1) and
b = 1. The reasoning for ϑ′ is similar. 2

Proof of Proposition 2.7 (Internal Address and Renormalization). We
only discuss the case of simple renormalization (the case of crossed renormalization is
treated in [RS, Corollary 4.2]).

Fix a hyperbolic component W of period n. Let MW be the component of n-
renormalizable parameters in M containing W (all c ∈ W are n-renormalizable), and
let ΨW : M → MW be the tuning homeomorphism; see [Ha, M3, M2] or [BKS, Sec-
tion 10]. Let 1→ S1 → . . .→ Sk = n be the internal address of W . Then the internal
address of every c ∈ MW starts with 1 → S1 → . . . → Sk = n because MW contains
no hyperbolic component of period less than n, so points in MW are not separated
from each other by parameter ray pairs of period less than n. All hyperbolic compo-
nents within MW , and thus all ray pairs separating points in MW , have periods that
are multiples of n, so all internal addresses of parameters within MW have the form
1 → S1 → . . . → Sk → Sk+1 . . . so that all Sm ≥ n are divisible by n. In fact, if
c ∈M has internal address 1→ S ′1 → . . .→ S ′k′ . . . , then it is not hard to see that the
internal address of ΨW (c) is 1 → S1 → . . . → n → nS ′1 → . . . → nS ′k . . . (hyperbolic
components of period S ′ in M map to hyperbolic components of period nS ′ in MW ,
and all ray pairs separating points in MW are associated to hyperbolic components in
MW that are images under ΨW ).
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For the converse, we need dyadic Misiurewicz-Thurston parameters: these are by
definition the landing points of parameter rays R(ϑ) with ϑ = m/2k; dynamically, these
are the parameters for which the singular orbit is strictly preperiodic and terminates
at the β fixed point. If ϑ = m/2k, then the kneading sequence ν(ϑ) has only entries
0 from position k + 1, so the internal address of ν(ϑ) contains all integers that are at
least 2k − 1. But the internal address of ν(ϑ) from Algorithm 1.5 equals the internal
address of R(ϑ) in parameter space (Proposition 1.6), and the landing point of R(ϑ) has
the same internal address. Therefore, the internal address of any dyadic Misiurewicz-
Thurston parameter contains all sufficiently large positive integers.

Suppose the internal address of some c ∈ M has the form 1 → S1 → . . . → Sk →
Sk+1 . . . with Sk = n and all Sm ≥ n are divisible by n. There is a component W with
address 1→ S1 → . . .→ Sk so that c ∈ WW . If c 6∈MW , then c is separated from MW

by a Misiurewicz-Thurston parameter c∗ ∈MW which is the tuning image of a dyadic
Misiurewicz-Thurston parameter (see [D1], [M2, Section 8], or [BKS, Corollary 9.27]).
Therefore, the internal address of c∗ contains all integers that are divisible by n and
sufficiently large, say at least Kn. Let S be the first entry in the internal address of c
that corresponds to a component “behind MW” (so that it is separated from MW by
c∗). The long internal address of c contains “behind” W only hyperbolic components
of periods divisible by n, and this implies that before and after c∗ there must be two
components of equal period (greater than Kn) that are not separated by a ray pair of
lower period. This contradicts Lavaurs’ Lemma. 2

Remark. In Definition 1.9, we defined angled internal addresses in parameter space,
but they can also be defined dynamically: the angles are combinatorial rotation num-
bers of rays landing at characteristic periodic points the periods of which occur in
the internal address. This allows us to give more dynamic proofs of several theorems
that we proved in parameter space. For instance, changing numerators has no impact
on the question whether an angled internal address is realized in the complex plane
(Theorem 2.3): for the Hubbard trees at centers of hyperbolic components, this sim-
ply changes the embedding of the tree, but not the question whether such a tree can
be embedded (compare the discussion in [BKS, Corollary 4.11 and Lemma 16.9]).
(The denominators are determined already by the internal address without angles; see
Lemma 2.2). Similarly, the angled internal address completely determines a Hubbard
tree with its embedding and thus the dynamics at the center of a hyperbolic compo-
nent; this is Theorem 1.10: the (finite) angled internal address completely specifies
every hyperbolic component.

4. Narrow Components and Admissibility

Every component W of period n has an associated internal address (finite, ending
with entry n); compare the remark before Definition 1.9. The component W also has
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an associated periodic kneading sequence ν(W ) consisting only of entries 0 and 1: one
way of defining this is to take any parameter ray R(ϕ) with irrational ϕ landing at
∂W ; then ν(W ) := ν(ϕ). Equivalently, let P (ϑ, ϑ′) be the parameter ray pair landing
at the root of W ; then ϑ and ϑ′ have period n and ν(ϑ) = ν(ϑ′) are ?-periodic of period
n, and ν(W ) = A(ν(ϑ)) = A(ν(ϑ′)) (see Lemma 1.2 and Proposition 1.6). Of course,
the internal address of W is the same as the internal address of R(ϕ), R(ϑ), R(ϑ′) or
of ϕ, ϑ or ϑ′.

4.1. Definition (Narrow Component)
A hyperbolic component of period n is narrow if its wake contains no component of
lower period, or equivalently if the wake has width 1/(2n − 1).

Remark. It follows directly from (1) that if W ′ is a bifurcation from another compo-
nent W , then W ′ is narrow if and only if W has period 1.

If W,W ′ are two hyperbolic components of periods n and n′ so that W ′ ⊂ WW , then
we say that W ′ is visible from W if there exists no parameter ray pair of period less
than n′ that separates W and W ′. If n < n′, then this is equivalent to the condition
that the internal address of W ′ be formed by the internal address of W , extended by
the entry n′.

4.2. Lemma (Visible Components from Narrow Component)
For every narrow hyperbolic component of period n, there are visible components of all
periods greater than n. More precisely, every p/q sublimb contains exactly n visible
components: exactly one component each of period qn− (n− 1), qn− (n− 2),. . . , qn.

Proof. Let W be a narrow hyperbolic component of period n and consider its p/q-
subwake. The visible components in this wake have periods at most qn. First we show
that any two visible components within the p/q-subwake of W have different internal
addresses. By way of contradiction, suppose there are two components W1 and W2 of
equal period m ≤ qn with the same internal address. By Theorem 1.10 there must be
another hyperbolic component W ′ in the same subwake of W so that W1 and W2 are in
different p1/q

′- and p2/q
′-subwakes of W ′ with q′ ≥ 3 (different hyperbolic components

with the same internal address must have different angled internal addresses). Let
n′ > n be the period of W ′. Then the width of these subwakes is, according to (1),

|W ′|(2
n′ − 1)2

2q′n′ − 1
≤ |W |(2

n − 1)2

2qn − 1
· (2n

′ − 1)2

2q′n′ − 1
=

2n − 1

2qn − 1
· (2n

′ − 1)2

2q′n′ − 1

<
2n(2(2−q′)n′)(1− 2−q

′n′)−1

2qn − 1
≤ 2(n−n′) · 2

2qn − 1
≤ 1

2qn − 1

because W ′ is contained in the p/q-wake of W . But this is not large enough to contain
a component of period at most qn, a contradiction.
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The next step is to prove that every subwake of W of denominator q contains exactly
2k external rays with angles a/(2(q−1)n+k − 1) for 1 ≤ k ≤ n, including the two rays
bounding the wake. In fact, the width of the wake is (2n−1)/(2qn−1), so the number
of rays one expects by comparing widths of wakes is

(2n − 1)(2(q−1)n+k − 1)

2qn − 1
=: 2k + α,

where an easy calculation shows that −1 ≤ α < 1 and that α = −1 can occur only for
k = n. The actual number of rays can differ from this expected value by no more than
one and is even, hence equal to 2k. Moreover, no such ray of angle a/(2(q−1)n+k−1) can
have period smaller than (q−1)n+k because it would land at a hyperbolic component
of some period dividing (q− 1)n+ k — but in the considered wake there would not be
room enough to contain a second ray of equal period.

This shows that, for any k ≤ n, the number of hyperbolic components of period
m = (q − 1)n + k in any subwake of W of denominator q equals 2k−1. They must
all have different internal addresses. The single component of period (q − 1)n + 1
takes care of the case k = 1, and its wake subdivides the p/q-subwake of W into two
components. There are two components of period (q− 1)n+ 2, and since their internal
addresses are different, exactly one of them must be in the wake of the component of
period (q − 1)n + 1, while the other is not; the latter one is visible from W . (The
non-visible component is necessarily narrow, while the visible component may or may
not be narrow.)

So far we have taken are of 3 components, and they subdivide the p/q-subwake
of W into 4 components. Each component most contain one component of period
(q − 1)n + 3, so exactly one of these components is visible from W , and so on. The
argument continues as long as we have uniqueness of components for given internal
addresses, which is for k ≤ n. 2

4.3. Lemma (Narrow Visible Components from Narrow Component)
Suppose W and W ′ are two hyperbolic components of periods n and n + s with s > 0
so that W is narrow and W ′ is visible from W . Let k ∈ {1, . . . , n − 1, n} be so that
s ≡ k modulo n. Then the question whether or not W ′ is narrow depends only on the
first k entries in the kneading sequence of W (but not otherwise on W ).

Proof. By Lemma 4.2, every p/q-subwake of W contains exactly one visible hy-
perbolic component Wm of period m = (q − 1)n + k for k = 1, 2, . . . , n. Such a
component Wm is narrow unless the wake WWm contains a visible component Wm′

with m′ = (q − 1)n + k′ and k′ ∈ {1, 2, . . . , k − 1}. If there is such a component, let
m′ be so that the width |Wm′ | is maximal (i.e., Wm and Wm′ are not separated by a
parameter ray pair of period less than m′).

In order to find out whether the unique visible component Wm′ is contained in
WWm , we need to compare the kneading sequence ν associated to W with the kneading
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sequence ν ′ “just before” Wm′ and find whether their first difference occurs at position
m (according to Corollary 1.7, the position of the first difference is the least period
of two ray pairs separating W and Wm′ : if this difference occurs after entry m, then
the ray pairs landing at the root of Wm do not separate W from Wm′ ; the difference
cannot occur before entry m because of visibility of Wm and the choice of m′).

By visibility of Wm′ , the kneading sequences ν and ν ′ coincide for at least m′ > n
entries. Eliminating these, we need to compare σm

′
(ν) with ν ′ for m−m′ = k− k′ < n

entries. Equivalently, we need to compare the first k − k′ entries in σk
′
(ν) with ν ′

or equivalently with ν: these are the entries νk′+1 . . . νk and ν1 . . . νk−k′ . But this
comparison involves only the first k entries in ν. (The precise criterion is: W ′ is not
narrow if and only if there is a k′ ∈ {1, 2, . . . , k − 1} with ρ(k′) = k.) 2

4.4. Proposition (Combinatorics of Purely Narrow Components)
Consider a hyperbolic component W with internal address 1 → S1 → . . . → Sk and
associated kneading sequence ν. Suppose that νSi = 0 for i = 1 = 2, . . . , k. Then W
is narrow and for every Sk+1 > Sk, there exists a hyperbolic component with internal
address 1→ S1 → . . .→ Sk → Sk+1; it is narrow if and only if νSk+1

= 1.

Proof. We prove the claim by induction on the length of internal addresses, starting
with the address 1 of length 0. The associated component has period 1, it is narrow
and has ν = 1, and there is no condition on νSi to check. For every S1 > 1, there
exists a hyperbolic component with internal address 1 → S1 (these are components
of period S1 bifurcating immediately from the main cardioid). By the remark after
Definition 4.1, these components are narrow, and indeed νS1 = 1.

Now assume by induction that the claim is true for a narrow component Wk−1 with
internal addresses 1 → S1 → . . . → Sk−1 of length k − 1 and associated kneading
sequence µ. We will prove the claim when W is a hyperbolic component with internal
address 1 → S1 → . . . → Sk−1 → Sk of length k and with associated internal address
ν so that νSk = 0. First we show that W is narrow: by the inductive hypothesis, it is
narrow if and only if µSk = 1, but this is equivalent to νSk = 0 because ν and µ first
differ at position Sk.

Consider some integer Sk+1 > Sk. By Lemma 4.2, there exists another component
Wk+1 with internal address 1 → S1 → . . . → Sk → Sk+1. We need to show that it is
narrow if and only if νSk+1

= 1. If Sk+1 is a proper multiple of Sk, then the assumption
νSk = 0 implies νSk+1

= 0, and we have to show that Wk+1 is not narrow. Indeed,
Wk+1 is a bifurcation from W by Lemma 2.1, and by the remark after Definition 4.1
bifurcations are narrow if and only if they bifurcate from the period 1 component. We
can thus write Sk+1 = qSk + S ′k+1 with S ′k+1 ∈ {Sk + 1, Sk + 2, . . . , 2Sk − 1}.

Again by Lemma 4.2, there exists another component W ′
k+1 with internal address

1 → S1 → . . . → Sk → S ′k+1; by Lemma 4.3, it is narrow if and only if Wk+1 is. But
ν has period Sk, so νSk+1

= νS′k+1
and the claim holds for Sk+1 if and only if it holds
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for S ′k+1. It thus suffices to restrict attention to the case Sk+1 < 2Sk. Whether or not
Wk+1 is narrow is determined by the initial Sk+1 − Sk < Sk entries in ν.

Now we use the inductive hypothesis for Wk−1: there exists a component W ′ with
address 1 → S1 → . . . → Sk−1 → (Sk−1 + Sk+1 − Sk), and it is narrow if and only if
µSk−1+Sk+1−Sk = 1. The kneading sequences µ and ν first differ at position Sk, so their
initial Sk+1−Sk entries coincide. Therefore, by Lemma 4.3, the componentW ′ is narrow
if and only if Wk+1 is. Therefore, Wk+1 is narrow if and only if µSk−1+Sk+1−Sk = 1.
Finally, we have

νSk+1
= νSk+1−Sk = µSk+1−Sk = µSk−1+Sk+1−Sk

by periodicity of ν (period Sk) and of µ (period Sk−1) and because the first difference
between ν and µ occurs at position Sk > Sk+1 − Sk. This proves the proposition. 2

Remark. We call a hyperbolic component Wk+1 with internal address 1 → S1 →
. . . → Sk → Sk+1 and associated kneading sequence ν purely narrow if νSi = 0 for
i = 1, 2, . . . , k + 1. Proposition 4.4 implies that this is equivalent to the condition
that 1 → S1 → . . . → Si−1 → Si describes a narrow component for i = 1, . . . , k + 1
(hence the name). The asymmetry in the statement of the proposition (for narrow
components, the last entry in ν must be 1, rather than 0 for all earlier components) is
because the condition is with respect to the kneading sequence of period Sk, not with
respect to the sequence of period Sk+1 associated to Wk+1.

Remark. For every narrow hyperbolic component, the previous results allow to con-
struct combinatorially the trees of visible components within any sublimb; for purely
narrow components, the global tree structure can thus be reconstructed by what we
call “growing of trees”: see Figure 3. These issues have been explored further by
Kauko [Ka].

4.5. Lemma (Maximal Shift of Kneading Sequence)
For a kneading sequence ν (without ?) with associated internal address 1 → S1 →
. . .→ Sk → . . . , the following are equivalent:

(1) no shift σk(ν) exceeds ν with respect to lexicographic ordering;
(2) for every r ≥ 1, νρ(r) = 0.

Every such kneading sequence is realized by a purely narrow hyperbolic component.

Proof. Pick some r ≥ 1. If νρ(r) = 1, then the entries νr+1νr+2 . . . νρ(r) exceed the
entries ν1ν2 . . . νρ(r)−r, hence σr(ν) > ν in the lexicographic ordering; conversely, if
νρ(r) = 0, then σr(ν) < ν. Thus both conditions are indeed equivalent.

By Proposition 4.4, it follows inductively that all internal addresses 1 → S1 →
. . .→ Sk−1 → Sk are realized by narrow components because the associated kneading
sequence ν satisfies νSi = νρ(Si−1) = 0. 2
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Remark. The existence of kneading sequences as described in this lemma can also
be derived from the general admissibility condition on kneading sequences, see [BKS,
Corollary 5.20] (this is a more abstract and difficult, but also more general result).
Schmeling observed that sequences that are maximal shifts with respect to the lexico-
graphic order are exactly the fixed points of the map ϑ 7→ ν(ϑ).
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Figure 3. Left: For a narrow hyperbolic component W (here of period
5), the trees of visible components within any p/q- and p′/q′-subwake
are the same when adding (q′ − q)n to the periods of all components
in the p/q-subwake; this “translation principle” follows directly from
Lemma 4.3, using just the combinatorics of internal addresses or knead-
ing sequences (even the embeddings of the trees are the same; this follows
from comparisons with dynamical planes). Right: if W ′ (here of period
19) is visible from W and both are narrow, then the tree of visible compo-
nents within the 1/2-subwake of W ′ can be reconstructed from the trees
of visible components within various subwakes of W : if n′ and n are the
periods of W ′ and W , then the tree formed by the visible components
in the 1/2-subwake of W ′ of periods n′ + 1, . . . , 2n′ − 1 (excluding the
bifurcating component of period n′) equals the tree formed by the visible
components of periods n + 1, . . . , n + n′ − 1 in the 1/q-subwakes of W ,
adding n′ − n to all periods.
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5. Symbolic Dynamics and Permutations

We will now discuss permutations of periodic points of pc(z) = z2 + c. We make
a brief excursion to algebra and describe our theorem first in algebraic terms (for
readers that are less familiar with these algebraic formulations, we restate the result
in Theorem 5.3). For n ≥ 1, let Qn(z) := p◦nc (z)− z (consider these as polynomials in
z with coefficients in C[c]). The roots of Qn are periodic points of period dividing n,
so we can factor them as

Qn =
∏
k|n

Pk ;

this product defines the Pk recursively, starting with P1 = Q1.

5.1. Theorem (Galois Groups of Polynomials)
For every n ≥ 1, the polynomials Pn are irreducible over C[c]. Their Galois groups Gn

consist of all the permutations of the roots of Pn that commute with the dynamics of
pc. There is a short exact sequence

0 −→ (Zn)Nn −→ Gn −→ SNn −→ 0 ,

where Zn = Z/nZ, Nn is the number of periodic orbits of exact period n for pc with
c ∈ Xn, and SNn is the symmetric group on Nn elements.

In this statement, the injections (Zn)Nn → Gn correspond to independent cyclic
permutations of the Nn orbits of period n, while the surjection is the projection from
periodic points to periodic orbits and yields arbitrary permutations among the orbits.
This theorem was derived independently by algebraic means in [Bo, MP].

A related statement in parameter space is still unsolved: consider the polynomials
Q̃n(c) := p◦nc (c)− c ∈ Z[c]. Their roots are parameters c for which the critical orbit is
periodic of period dividing n (i.e., c is the center of a hyperbolic component of period
n), so we can again factor as Q̃n =

∏
k|n P̃k with P̃1 = Q̃1.

5.2. Conjecture (Galois Groups for Centers of Hyperbolic Components)
All P̃n are irreducible over Q, and their Galois groups are the full symmetric groups.

This would say that the centers of hyperbolic components of fixed period n have the
maximal symmetry possible. Manning has confirmed this conjecture for low values of
n by computer experiments (unpublished).

Our approach for proving Theorem 5.1 will be using analytic continuation, like in the
proof of the Ruffini-Abel theorem. This will yield explicit paths along which analytic
continuation yields any given permutations. For specific values of c ∈ C, the Pn are
polynomials in C[z] and factor over C; we write them as Pn(c). Let

Xn := {c ∈ C : all roots of Pn(c) are simple} .
Then all periodic points of period n can be continued analytically through Xn, so the
fundamental group of Xn (with respect to any basepoint) acts on periodic points by
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analytic continuation. The question is which permutations can be so achieved. Of
course, all permutations have to commute with the dynamics: if z is a periodic points
of pc, then any permutation π that is achieved by analytic continuation must have the
property that pc(π(z)) = π(pc(z)). It turns out that this is the only condition.

5.3. Theorem (Analytic Continuation of Periodic Points)
For every period n ≥ 1, analytic continuation in Xn induces all permutations among
periodic points of exact period n that commute with the dynamics.

If z0 is a double root of Pn(c) for some c ∈ C , then z0 is also a double root of Qn

and (d/dz)Qn(z0) = 0, hence µ := (d/dz)p◦nc (z0) = 1. Here µ is the multiplier of the
periodic orbit containing z0. It is well known that a quadratic polynomial can have at
most one non-repelling cycle. If µ = 1, there are two possibilities [DH, M2, Sch1]: every
point on the non-repelling cycle is either a merger of two points on different orbits of the
same exact period n, or it is a merger of one point of period k (so that k strictly divides
n) and n/k points from one orbit of period n. In either case, c is the root of a hyperbolic
component of period n: it is primitive in the first case and a satellite component in the
second. Therefore, c is the landing point of a parameter ray R(ϑ), where ϑ = a/(2n−1)
for some a ∈ {0, 1, . . . , 2n−2}. It follows that C\Xn is finite, and all periodic points of
period n can be continued analytically along curves in Xn (as roots of Pn(c)). (However,⋃
n C \Xn = ∂M: every c ∈ ∂M is a limit point of centers of hyperbolic components

[DH], and it follows easily that the same is true for parabolics because for every ε > 0
almost every center has a parabolic parameter at distance less than ε).

5.4. Lemma (Local Coordinates Near Parabolic Parameters)
Let c0 be the root of a hyperbolic component W of period n.

• If W is primitive, then the parabolic orbit at c0 is the merger of two periodic
orbits of exact period n; when c makes a small loop around c0, analytic contin-
uation of both orbits interchanges them.
• If W is a satellite from a component of period k, then q := n/k is an integer

with q ≥ 2, and the parabolic orbit at c0 is the merger of one orbit of period
n with one orbit of period k; when c makes a small loop around c0, analytic
continuation leaves the period k orbit unchanged and permutes the period n
orbit cyclically. Specifically if k = 1, the period n orbit is permuted transitively.

Every other periodic point of pc0 is simple and on a repelling orbit, and it can be
continued analytically in a neighborhood of c0.

Proof. For the the primitive case, see [Sch1, Lemma 5.1 and Corollary 5.7] or the
proof of [M2, Lemma 4.2] (the fact that the two orbits are indeed interchanged is
equivalent to the fact that no two hyperbolic components of equal period have common
boundary points).
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In the satellite case, the parabolic orbit of pc0 has exact period k and breaks up under
perturbation into one orbit of period n and one of period k (see e.g., [M2, Theorem 4.1]
or [Sch1, Lemma 5.1]). The multiplier of the parabolic orbit is µ0 = e2πip/q for some
p coprime to q. Since µ0 6= 1, the period k orbit can be continued analytically in a
neighborhood of c0, so small loops around c0 can act only on the orbit of period n; any
permutation of points on this orbit must commute with the dynamics, so only cyclic
permutations are possible.

Perturbing c0 to nearby parameters c, every parabolic periodic point breaks up into
one point w of period k and q points of period n. These q points form, to leading
order, a regular q-gon with center w because the first return map of w has the local
form z 7→ µz with µ near e2πip/q. When c turns once around c0, analytic continuation
induces a cyclic permutation among these q points of period n so that during the loop,
the q points of period n continue to lie on (almost) regular q-gons. When the loop
is completed, the vertices of the q-gon are restored, so the q-gon will rotate by s/q
of a full turn, for some s ≥ 1. If s > 1, then the period n orbit and its multiplier
would be restored to leading order after c has completed 1/s-th of a turn, and since
boundaries of hyperbolic components are smooth curves this would imply that c0 was
on the boundary of s hyperbolic components of period n. This is not the case by [DH],
[M2, Sec. 6] or [Sch1, Corollary 5.7]. Therefore s = 1. 2

The fundamental group of Xn (with respect to any basepoint) acts on the set of
periodic points of pc of period n by analytic continuation. Set X := C\ (M∪R+): this
is a simply connected subset of all Xn and will be used as a “fat basepoint” for the
fundamental group of Xn.

For every c ∈ X we will describe periodic points of pc using symbolic dynamics: since
c 6∈M, the critical value c is on the dynamic ray Rc(ϑ) for some ϑ ∈ S1. Therefore the
two dynamic rays Rc(ϑ/2) and Rc((ϑ+ 1)/2) both land at 0 and separate the complex
plane into two open parts, say U0 and U1 so that c ∈ U1 (see Figure 4). The partition
boundary does not intersect the Julia set Jc of pc, so we have Jc ⊂ U0 ∪ U1. Every

z ∈ Jc has an associated itinerary τ1τ2τ3 . . . , where τk ∈ {0, 1} so that p
◦(k−1)
c (z) ∈ Uτk .

5.5. Lemma (Permutations and Symbolic Dynamics)
Let c0 be the landing point of the parameter ray R(ϑ), where ϑ = a/(2n − 1). We
consider the action of analytic continuation along a small loop around c0 starting and
ending at R(ϑ). Let W be the component of period n with root c0.

• If W is primitive, then analytic continuation along this loop interchanges the
two periodic points with itineraries A(ν(ϑ)) and A(ν(ϑ)).
• If W is a satellite component, then exactly one of the two itineraries A(ν(ϑ))

and A(ν(ϑ)) has exact period n, and the periodic point with this itinerary is on
the orbit that is affected by analytic continuation along the same loop.
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0

1

Figure 4. The partition for disconnected quadratic Julia sets is defined
by the two dynamic rays that crash into the critical point; itineraries are
defined with respect to this partition.

Proof. Let U ⊂ C be a disk neighborhood of c0 in which c0 is the only puncture of
Xn, and which intersects no parameter ray at n-periodic angles other than R(ϑ) and
the second parameter ray landing at c0. Let γ ⊂ Xn be the loop under consideration;
assume it is small enough so that γ ⊂ U , and assume furthermore that γ does not
intersect R(ϑ) except at its endpoints. For external angles ϑ1 < ϑ < ϑ2 sufficiently
close to ϑ, there are two parameters c1,2 ∈ γ\ with ci ∈ R(ϑi) for i = 1, 2 (the points
c1 are near the two ends of γ). For pc1 and pc2 , the periodic dynamic rays Rc1(ϑ) and
Rc2(ϑ) land at repelling periodic points, say z1 and z2.

Consider a curve of parameters within U tending from c1 to c0 avoiding R(ϑ). The
analytic continuation of z1 along this path tends to a periodic point z0 of pc0 that is
either repelling or parabolic, and by [Sch1, Proposition 5.2] the dynamic ray Rc0(ϑ)
lands at z0 (landing points of periodic rays depend continuously on the parameter
whenever the rays land). Since the parabolic parameter c0 is the landing point of
R(ϑ), the dynamic ray Rc0(ϑ) lands at the parabolic orbit ([DH]; see also [M2, Sch2]).
Therefore z1 (and similarly z2) tend to the parabolic orbit when the parameter tends
to c0. In the primitive case, Lemma 5.4 says that the analytic continuations of z1 and
z2 are affected by analytic continuation along γ. In the satellite case, exactly one of the
points z1 and z2 has exact period n, the other one has period dividing n, and the same is
true for their itineraries. Again by Lemma 5.4, it is the period n orbit that is affected by
analytic continuation. All that remains to be described are the itineraries of z1 and z2.
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For i = 1, 2, the itinerary of zi within the Julia set of pci equals the itinerary of ϑ
with respect to ϑi, and these are equal to the limiting kneading sequences limϕ↗ϑ ν(ϕ)
and limϕ↘ϑ ν(ϕ), hence equal to A(ν(ϑ)) and A(ν(ϑ)). They differ exactly at the n-th
position within the period, so they have different numbers of symbols 0 within every
period. Therefore analytic continuation within X does not move z1 to z2, so both are
on different orbits throughout X. 2

5.6. Proposition (Symmetric Permutation Group on Orbits)
Analytic continuation in Xn induces the full symmetric group on the set of periodic
orbits of period n.

Proof. The domain Xn is the complement of the finite set of roots of components of
period n, and a loop around any of these roots affects at most two periodic orbits of
period n; if it does affect two orbits, then both orbits are interchanged. The permuta-
tion group among the periodic orbits of period n is thus generated by pair exchanges.
As soon as it acts transitively, it is automatically the full symmetric group.

It thus suffices to show that any orbit of period n can be moved to the unique orbit
containing the itinerary 11 . . . 110. In fact, it suffices to show the following: suppose a
periodic point has an itinerary containing at least two entries 0 during its period; then
it can be moved to a periodic point whose itinerary has one entry 0 fewer per period.
Repeated application will bring any periodic point onto the unique orbit with a single
0 per period, i.e., onto the orbit containing the itinerary 11 . . . 110.

Now consider a periodic point z of period n and assume that its itinerary τz contains
at least two entries 0 per period. Let τ be the maximal shift of τz (with respect to
the lexicographic order), and let τ ′ be the same sequence in which the n-th entry
(which is necessarily a 0 in τ) is replaced by a 1, again repeating the first n entries
periodically. Then by Lemma 4.5 there is a narrow hyperbolic component W with
associated kneading sequence ν(W ) = τ . Let R(ϑ) be a parameter ray landing at the
root of W ; then A(ν(ϑ)) = ν(W ), so the ?-periodic sequence ν(ϑ) coincides with τ and
τ ′ for n−1 entries. The component W is primitive: by the remark after Definition 4.1,
a narrow component that is not primitive must bifurcate from the period 1 component,
and it would then have internal address 1 → n and kneading sequence with a single
entry 0 in the period. Let c0 be the root of W . Then by Lemma 5.5, a small loop
around c0 interchanges the periodic points with itineraries τ and τ ′. This is exactly
the statement we need: we found a loop along which analytic continuation turns z into
a periodic point whose itinerary has one entry 0 fewer per period. 2

Proof of Theorem 5.3. Analytic continuation can achieve only permutations that
commute with the dynamics. To see that all of them can actually be achieved, it
suffices to specify one loop in Xn that permutes one orbit transitively and leaves all
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other orbits (of the same period) unchanged: together with transitive permutations of
all orbits, this generates all permutations that commute with the dynamics.

Let c0 be the landing point of the parameter ray R(1/(2n − 1)); it is the bifurca-
tion point from the period 1 component to a component of period n. According to
Lemma 5.4, a small loop around c0 induces a transitive permutation on a single orbit
of period n and leaves all other orbits unchanged. This is exactly what is needed to
prove the claim. 2

5.7. Corollary (Riemann Surface of Periodic Points)
For every n ≥ 1, the analytic curve

{(c, z) : c ∈ Xn and z is a periodic under pc of exact period n}
is connected, i.e., it is a Riemann surface.

These results can be extended to preperiodic points as follows [Mü].

5.8. Corollary (Permutations of Preperiodic Points)
Consider the set of preperiodic points that take exactly k iterations to become periodic
of period n. For all positive integers k and n, analytic continuation along appropriate
curves in C achieves all permutations that commute with the dynamics.

Proof. The parameter ray R(ϑk,n) with ϑk,n = 1/(2k2(n−1)) lands at a Misiurewicz-
Thurston-parameter ck,n for which the dynamic ray Rck,n(ϑ) lands at the critical value.

We have νk,n := ν(ϑk,n) = 11 . . . 1 11 . . . 10 = 1k 1n−10. A small loop around ck,n
interchanges the two preperiodic points with itineraries 0νk,n and 1νk,n (these are the
two preimage itineraries of the critical values): every periodic point can be continued
analytically in a sufficiently small neighborhood of ck,n and all points on their backwards
orbit as long as taking preimages does not involve the critical value. It follows that
small loops around ck,n interchange the preperiodic points with itineraries τ0νk,n and
τ1νk,n for every finite sequence τ over {0, 1}.

Consider a preperiodic point z with itinerary τ1 1n−10, where τ is an arbitrary string
over {0, 1} of length k − 1 (the entry after τ must be 1, or the periodic part in the
itinerary would start earlier). If τ has at least one entry 0, there is a value k′ so that a
small loop around ck′,n turns the last entry 0 within τ into an entry 1. Repeating this a
finite number of times, z can be continued analytically into the preperiodic point with
itinerary νk,n. Analytic continuation thus acts transitively on the set of preperiodic

points with itineraries τ1 1n−10, for all 2k−1 sequences τ of length k − 1. Since this is
achieved by pair exchanges, the full symmetric group on these points is realized.

Two preperiodic points z, z′ of pc are on the same grand orbit if p◦nc (z) = p◦n
′

c (z′) for
some positive integers n, n′. In terms of symbolic dynamics, this is the case if they have
the same period, and the periodic parts of their itineraries are cyclic permutations of
each other. A permutation of preperiodic points of preperiod k and period n on the
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same grand orbit commutes with the dynamics if and only if it induces the same cyclic
permutations on the periodic parts of the orbit.

For the grand orbit containing the point with itinerary 1n−10, all permutations that
commute with the dynamics can thus be achieved by analytic continuation around
Misiurewicz-Thurston parameters ck,n and the root of the hyperbolic component 11/n →
n (a loop around the latter induces a transitive cyclic permutation of the periodic orbit

containing the periodic point with itinerary 1n−10).
Since analytic continuation induces the full symmetric group on the set of grand

orbits, the claim follows. 2

Note that any permutation of preperiodic points of preperiod k and period n induces
a permutation of preperiodic points of preperiod in {k−1, k−2, . . . , 1, 0} and period n.
Analytic continuation takes place inXn from which finitely many Misiurewicz-Thurston
points are removed (and there is an ambiguity at centers of hyperbolic components of
period n: the critical point should count both as a periodic point and a preperiodic
point of preperiod 1).

Analogous results can also be derived for the families of unicritical polynomials,
parametrized in the form z 7→ zd + c for d ≥ 2. Again, analytic continuation allows
us to achieve all permutations of periodic points that commute with the dynamics; for
details, see [LS, Section 12]. Note that the analogous statement for general degree d
polynomials is much weaker: the bigger the space of maps, the easier it is to achieve
permutations by analytic continuation.

A related study was done by Blanchard, Devaney, Keen [BDK]: analytic continuation
in the shift locus of degree d polynomials realizes all automorphisms of the shift over
d symbols (in the special case of d = 2, this corresponds to a loop around M, and
this interchanges all entries 0 and 1 in itineraries; indeed, this is the only non-trivial
automorphism of the 2-shift).

A simple space where not all permutations can be achieved is the space of quadratic
polynomials, parametrized as z 7→ λz(1−z) with λ ∈ C: the two fixed points are z = 0
and z = 1−1/λ and they cannot be permuted by analytic continuation. This is related
to the fact that the λ-space is not a true parameter space; every affine conjugacy class
of quadratic polynomials is represented twice: the λ-space is the double cover over the
true parameter space (written as z 7→ z2 + c) that distinguishes the two fixed points.
We know of no parameter space of rational maps that is a true parameter space in
which analytic continuation cannot achieve all permutations that commute with the
dynamics.
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Paris-Sud (1992).

[BF] Bodil Branner, Nuria Fagella, Homeomorphisms between limbs of the Mandelbrot set. J. Geom.
Anal. 9 3 (1999), 327–390.

[BKS] Henk Bruin, Alexandra Kaffl, Dierk Schleicher, Symbolic Dynamics of Quadratic Polynomials,
manuscript.

[D1] Adrien Douady, Algorithms for computing angles in the Mandelbrot set, in: Chaotic dynamics
and fractals. Acad. Press (1986).

[D2] Adrien Douady, Descriptions of compact sets in C, in: Topological Methods in Modern Math-
ematics, Publish or Perish (1993) 429–465.

[DH] Adrien Douady, John Hubbard, Études dynamique des polynômes comples I & II, Publ. Math.
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