User-centered online reinforcement learning for emergent composition of ambient applications - Archive ouverte HAL
Poster De Conférence Année : 2019

User-centered online reinforcement learning for emergent composition of ambient applications

Résumé

User Mobility Changing needs Unpredictability Components and services Composability Unpredictable availability Environment Uncertainty Instability How to provide working and relevant composite services? Distributed learning from user feedback Announcement-based interaction protocol ARSA Multi-Agent System Decentralized decision Emergence of new composite services Environment-directed automatic service composition Dynamic and continuous adaptation to the context and the user Online reinforcement distributed learning Consideration of new appearing services User ENVIRONMENT OCE State (Sensed services)
Fichier principal
Vignette du fichier
YOUNES_Poster_CAP_2019.pdf (1.09 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03600426 , version 1 (07-03-2022)

Identifiants

  • HAL Id : hal-03600426 , version 1

Citer

Walid Younes, Françoise Adreit, Sylvie Trouilhet, Jean-Paul Arcangeli. User-centered online reinforcement learning for emergent composition of ambient applications. Plate-Forme Intelligence Artificielle (PFIA 2019), Jul 2019, Toulouse, France. . ⟨hal-03600426⟩
51 Consultations
23 Téléchargements

Partager

More