Wavelets and estimation of long memory in nonstationary models: does anything beat the Exact Local Whittle Estimator? - Archive ouverte HAL
Article Dans Une Revue Communications in Statistics - Simulation and Computation Année : 2016

Wavelets and estimation of long memory in nonstationary models: does anything beat the Exact Local Whittle Estimator?

Résumé

In this paper, we analyze the performance of five estimation methods for the long memory parameter d. The goal of our paper is to construct a wavelet estimate for the fractional differencing parameter in nonstationary long memory processes which dominate the well known estimate of Shimotsu and Phillips (2005). The simulation results show that the wavelet estimation method of Lee (2005) with several tapering techniques performs better under most cases in nonstationary long memory. The comparison is based on the empirical root mean squared error of each estimate.
Fichier principal
Vignette du fichier
Communications in Statistics 2017.pdf (266.13 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03599624 , version 1 (07-03-2022)

Identifiants

Citer

H Boubaker, ; Boutahar, R Khalfaoui. Wavelets and estimation of long memory in nonstationary models: does anything beat the Exact Local Whittle Estimator?. Communications in Statistics - Simulation and Computation, 2016, 46 (2), pp.189-1218. ⟨10.1080/03610918.2014.995814⟩. ⟨hal-03599624⟩
41 Consultations
44 Téléchargements

Altmetric

Partager

More