Adaptive gold/vanadium dioxide periodic arrays for infrared optical modulation - Archive ouverte HAL
Article Dans Une Revue Applied Surface Science Année : 2022

Adaptive gold/vanadium dioxide periodic arrays for infrared optical modulation

Résumé

Localized surface plasmon resonances (LSPR) make systems capable of concentrating and amplifying light intensity at their near surface. Applications ranging from energy harvesting to biological sensors depend on the modulation of LSPR. Through the synthesis and shape modifications of Au quasi-triangular nanoplatelets (QTP) arrays, LSPR modulation from near-to mid-infrared (~1.5μm to ~4.5μm) is revealed. Au QTP arrays are then associated to a thermochromic vanadium dioxide (VO2) layer leading to a "smart" nanocomposite exhibiting modulated absorptions. The VO2 layer acts as a phase change material with a tunable dielectric function vs. temperature and represents an active matrix. The dynamics of the geometric changes in QTP arrays and the phase transition of the matrix are directly correlated to the shift of the LSPR position (Delta l_SPR ~ 675nm). The experimental data are supported by a theoretical approach via the finite difference time domain (FDTD) method that provides the LSPR characteristics in the various Au QTP array and nanocomposite configurations. The experimental and modelling investigations prove that the red-shift resonance modulation originates from the creation of a temperature-dependent core-shell structure of Au QTP (core) surrounded by a thin metallic VO2 layer (shell) and embedded into the VO2 dielectric matrix.

Domaines

Matériaux
Fichier principal
Vignette du fichier
preprint.pdf (3.63 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03591181 , version 1 (28-02-2022)

Identifiants

Citer

Adrian-Ionut Bercea, Corinne Champeaux, Alexandre Boulle, Catalin Constantinescu, Julie Cornette, et al.. Adaptive gold/vanadium dioxide periodic arrays for infrared optical modulation. Applied Surface Science, 2022, 585, pp.152592. ⟨10.1016/j.apsusc.2022.152592⟩. ⟨hal-03591181⟩
114 Consultations
152 Téléchargements

Altmetric

Partager

More