Speech emotion recognition using GhostVLAD and sentiment metric learning
Résumé
In this paper, we introduce a novel deep learning-based speech emotion recognition method. The proposed approach exploits a convolutional neural network (CNN), enriched with a GhostVLAD feature aggregation layer. The resulting representation adjusts the contribution of each spectrogram segments to the final class prototype representation and is used for trainable and discriminative clustering purposes. In addition, we introduce a modified triplet loss function which integrates the relations between the various emotional patterns. The experimental evaluation, carried out on RAVDESS and CREMA-D datasets validates the proposed methodology, which yields emotion recognition rates superior to 83% and 64%, respectively. The comparative evaluation shows that the proposed approach outperforms state of the art techniques, with gains in accuracy of more than 3%.