Fast off-the-grid sparse recovery with over-parametrized projected gradient descent - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

Fast off-the-grid sparse recovery with over-parametrized projected gradient descent

Résumé

We consider the problem of recovering off-the-grid spikes from Fourier measurements. Successful methods such as sliding Frank-Wolfe and continuous orthogonal matching pursuit (OMP) iteratively add spikes to the solution then perform a costly (when the number of spikes is large) descent on all parameters at each iteration. In 2D, it was shown that performing a projected gradient descent (PGD) from a gridded over-parametrized initialization was faster than continuous orthogonal matching pursuit. In this paper, we propose an off-the-grid over-parametrized initialization of the PGD based on OMP that permits to fully avoid grids and gives faster results in 3D.
Fichier principal
Vignette du fichier
main.pdf (1.28 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03590939 , version 1 (28-02-2022)
hal-03590939 , version 2 (04-08-2022)

Identifiants

Citer

Pierre-Jean Bénard, Yann Traonmilin, Jean-François Aujol. Fast off-the-grid sparse recovery with over-parametrized projected gradient descent. 2022 30th European Signal Processing Conference (EUSIPCO), 2022, Belgrade (Serbia), France. ⟨hal-03590939v2⟩
140 Consultations
149 Téléchargements

Altmetric

Partager

More