Periodic geodesics for contact sub-Riemannian 3D manifolds
Résumé
The goal of this paper is to study periodic geodesics for sub-Riemannian metrics on a contact 3D-manifold.
We develop two rather independent subjects:
1) The existence of closed geodesics spiraling around periodic Reeb orbits for a generic metric.
2) The precise study of the periodic geodesics for a right invariant metric on a quotient of SL2(R)
Origine | Fichiers produits par l'(les) auteur(s) |
---|