Human Activity Recognition: A Spatio-temporal Image Encoding of 3D Skeleton Data for Online Action Detection - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

Human Activity Recognition: A Spatio-temporal Image Encoding of 3D Skeleton Data for Online Action Detection

Résumé

Human activity recognition (HAR) based on skeleton data that can be extracted from videos (Kinect for example) , or provided by a depth camera is a time series classification problem, where handling both spatial and temporal dependencies is a crucial task, in order to achieve a good recognition. In the online human activity recognition, identifying the beginning and end of an action is an important element, that might be difficult in a continuous data flow. In this work, we present a 3D skeleton data encoding method to generate an image that preserves the spatial and temporal dependencies existing between the skeletal joints.To allow online action detection we combine this encoding system with a sliding window on the continous data stream. By this way, no start or stop timestamp is needed and the recognition can be done at any moment. A deep learning CNN algorithm is used to achieve actions online detection.
Fichier principal
Vignette du fichier
Online_Human_Activity_Recognition___A_Spatio_temporal_Image_Encoding_for_Skeleton_DataVISAPP.pdf (1.43 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03586862 , version 1 (27-03-2023)

Identifiants

Citer

Nassim Mokhtari, Alexis Nédélec, Pierre de Loor. Human Activity Recognition: A Spatio-temporal Image Encoding of 3D Skeleton Data for Online Action Detection. 17th International Conference on Computer Vision Theory and Applications, Feb 2022, Online Streaming, France. pp.448-455, ⟨10.5220/0010835800003124⟩. ⟨hal-03586862⟩
80 Consultations
79 Téléchargements

Altmetric

Partager

More