EAPB0503, a novel imidazoquinoxaline derivative, inhibits growth and induces apoptosis in chronic myeloid leukemia cells - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Anti-Cancer Drugs Année : 2014

EAPB0503, a novel imidazoquinoxaline derivative, inhibits growth and induces apoptosis in chronic myeloid leukemia cells

Résumé

Imatinib, the first-generation tyrosine kinase inhibitor, revolutionized the therapeutic management of chronic myeloid leukemia (CML) and is highly effective in inducing remissions and prolonging the survival of CML patients. However, one-third of patients develop intolerance or resistance to treatment, and CML stem cells remain insensitive to this therapy, leading almost inevitably to relapse upon treatment discontinuation. Imidazoquinoxalines are imiquimod derivatives that induce growth inhibition and induction of caspase-dependent apoptosis in melanoma and T-cell lymphoma cells. We investigated the effects of EAPB0203 and EAPB0503, two novel imidazoquinoxaline derivatives, on human CML cell lines and showed that they induced a dose-dependent and time-dependent cell growth inhibition. EAPB0503 proved more potent and induced a specific cell cycle arrest in mitosis in CML cells and direct activation of apoptosis as evidenced by increased pre-G0 population, breakdown of mitochondrial membrane potential, PARP cleavage, and DNA breakage. Interestingly, EAPB0503 decreased BCR-ABL oncoprotein levels. The combination of EAPB0503 with imatinib synergized to inhibit the proliferation of CML cells, and most importantly, EABP0503 inhibited the proliferation of imatinib-resistant CML cells, offering promising therapeutic modalities that would circumvent resistance to tyrosine kinase inhibitors and improve the prognosis of CML.
Fichier non déposé

Dates et versions

hal-03585585 , version 1 (23-02-2022)

Identifiants

Citer

Jessica Saliba, Carine Deleuze-Masquéfa, Ahmad Iskandarani, Rabab El Eit, Raed Hmadi, et al.. EAPB0503, a novel imidazoquinoxaline derivative, inhibits growth and induces apoptosis in chronic myeloid leukemia cells. Anti-Cancer Drugs, 2014, 25 (6), pp.624-632. ⟨10.1097/CAD.0000000000000084⟩. ⟨hal-03585585⟩
8 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Mastodon Facebook X LinkedIn More