Training Adaptive Reconstruction Networks for Blind Inverse Problems - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

Training Adaptive Reconstruction Networks for Blind Inverse Problems

Résumé

Neural networks have recently allowed solving many ill-posed inverse problems with unprecedented performance. Physics informed approaches already progressively replace carefully hand-crafted reconstruction algorithms in real applications. However, these networks suffer from a major defect: when trained on a given forward operator, they do not generalize well to a different one. The aim of this paper is twofold. First, we show through various applications that training the network with a family of forward operators allows solving the adaptivity problem without compromising the reconstruction quality significantly. Second, we illustrate that this training procedure allows tackling challenging blind inverse problems. Our experiments include partial Fourier sampling problems arising in magnetic resonance imaging (MRI), computerized tomography (CT) and image deblurring.
Fichier principal
Vignette du fichier
Training_Adaptive_Reconstruction_Networks_for_Inverse_Problems.pdf (1.85 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03585120 , version 1 (22-02-2022)
hal-03585120 , version 2 (25-02-2022)
hal-03585120 , version 3 (13-11-2022)
hal-03585120 , version 4 (13-10-2023)
hal-03585120 , version 5 (13-12-2023)

Identifiants

Citer

Alban Gossard, Pierre Weiss. Training Adaptive Reconstruction Networks for Blind Inverse Problems. 2022. ⟨hal-03585120v2⟩
744 Consultations
630 Téléchargements

Altmetric

Partager

More