La traduction littéraire automatique : Adapter la machine à la traduction humaine individualisée
Résumé
La traduction automatique neuronale et son adaptation à des domaines spécifiques par le biais de corpus spécialisés ont permis à cette technologie d’intégrer bien plus largement qu’auparavant le métier et la formation des traducteur·trice·s. Si le paradigme neuronal (et le deep learning de manière générale) a ainsi pu investir des domaines parfois insoupçonnés, y compris certains où la créativité est de mise, celui-ci est moins marqué par un gain phénoménal de performance que par une utilisation massive auprès du public et les débats qu’il génère, nombre d’entre eux invoquant couramment le cas littéraire pour (in)valider telle ou telle observation. Pour apprécier la pertinence de cette technologie, et ce faisant surmonter les discours souvent passionnés des opposants et partisans de la traduction automatique, il est toutefois nécessaire de mettre l’outil à l’épreuve, afin de fournir un exemple concret de ce que pourrait produire un système entraîné spécifiquement pour la traduction d’œuvres littéraires. Inscrit dans un projet de recherche plus vaste visant à évaluer l’aide que peuvent fournir les outils informatiques aux traducteurs et traductrices littéraires, cet article propose par conséquent une expérience de traduction automatique de la prose qui n’a plus été tentée pour le français depuis les systèmes probabilistes et qui rejoint un nombre croissant d’études sur le sujet pour d’autres paires de langues. Nous verrons que si les résultats sont encourageants, ceux-ci laissent présager une tout autre manière d’envisager la traduction automatique, plus proche de la traduction humaine assistée par ordinateur que de la post-édition pure, et que l’exemple des œuvres de littérature soulève en outre des réflexions utiles pour la traduction dans son ensemble.
Origine | Fichiers produits par l'(les) auteur(s) |
---|