Rank-Sensitive Computation of the Rank Profile of a Polynomial Matrix - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

Rank-Sensitive Computation of the Rank Profile of a Polynomial Matrix

Vincent Neiger
Thi Xuan Vu
  • Fonction : Auteur
  • PersonId : 1128673

Résumé

Consider a matrix $\mathbf{F} \in \mathbb{K}^{m \times n}$ of univariate polynomials over a field~$\mathbb{K}$. We study the problem of computing the column rank profile of $\mathbf{F}$. To this end we first give an algorithm which improves the minimal kernel basis algorithm of Zhou, Labahn, and Storjohann (Proceedings ISSAC 2012). We then provide a second algorithm which computes the column rank profile of $\mathbf{F}$ with a rank-sensitive complexity of $O\tilde{~}(r^{\omega-2} n (m+D))$ operations in $\mathbb{K}$. Here, $D$ is the sum of row degrees of $F$, $\omega$ is the exponent of matrix multiplication, and $O\tilde{~}(\cdot)$ hides logarithmic factors.
Fichier principal
Vignette du fichier
polmat_rank_profile.pdf (652.88 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03580860 , version 1 (18-02-2022)
hal-03580860 , version 2 (10-05-2022)

Identifiants

  • HAL Id : hal-03580860 , version 1

Citer

George Labahn, Vincent Neiger, Thi Xuan Vu, Wei Zhou. Rank-Sensitive Computation of the Rank Profile of a Polynomial Matrix. 2022. ⟨hal-03580860v1⟩
107 Consultations
94 Téléchargements

Partager

More