Change detection in multisensor SAR images using bivariate gamma distributions - Archive ouverte HAL
Article Dans Une Revue IEEE Transactions on Image Processing Année : 2008

Change detection in multisensor SAR images using bivariate gamma distributions

Jordi Inglada

Résumé

This paper studies a family of distributions constructed from multivariate gamma distributions to model the statistical properties of multisensor synthetic aperture radar (SAR) images. These distributions referred to as multisensor multivariate gamma distributions (MuMGDs) are potentially interesting for detecting changes in SAR images acquired by different sensors having different numbers of looks. The first part of the paper compares different estimators for the parameters of MuMGDs. These estimators are based on the maximum likelihood principle, the method of inference function for margins and the method of moments. The second part of the paper studies change detection algorithms based on the estimated correlation coefficient of MuMGDs. Simulation results conducted on synthetic and real data illustrate the performance of these change detectors.
Fichier principal
Vignette du fichier
Tourneret__363.pdf (1.93 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03579543 , version 1 (18-02-2022)

Identifiants

Citer

Florent Chatelain, Jean-Yves Tourneret, Jordi Inglada. Change detection in multisensor SAR images using bivariate gamma distributions. IEEE Transactions on Image Processing, 2008, 1 (3), pp.249-258. ⟨10.1109/TIP.2008.916047⟩. ⟨hal-03579543⟩
94 Consultations
34 Téléchargements

Altmetric

Partager

More