Subgradient sampling for nonsmooth nonconvex minimization - Archive ouverte HAL
Article Dans Une Revue SIAM Journal on Optimization Année : 2023

Subgradient sampling for nonsmooth nonconvex minimization

Jérôme Bolte
Tam Le
  • Fonction : Auteur
  • PersonId : 752715
  • IdHAL : tam-le

Résumé

Risk minimization for nonsmooth nonconvex problems naturally leads to first-order sampling or, by an abuse of terminology, to stochastic subgradient descent. We establish the convergence of this method in the path-differentiable case and describe more precise results under additional geometric assumptions. We recover and improve results from Ermoliev and Norkin [Cybern. Syst. Anal., 34 (1998), pp. 196–215] by using a different approach: conservative calculus and the ODE method. In the definable case, we show that first-order subgradient sampling avoids artificial critical points with probability one and applies moreover to a large range of risk minimization problems in deep learning, based on the backpropagation oracle. As byproducts of our approach, we obtain several results on integration of independent interest, such as an interchange result for conservative derivatives and integrals or the definability of set-valued parameterized integrals.
Fichier principal
Vignette du fichier
subgradientSamplingRevised2.pdf (462.66 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-03579383 , version 1 (18-02-2022)
hal-03579383 , version 2 (25-02-2022)
hal-03579383 , version 3 (28-10-2022)
hal-03579383 , version 4 (26-01-2023)
hal-03579383 , version 5 (09-03-2023)
hal-03579383 , version 6 (22-07-2024)

Licence

Identifiants

Citer

Jérôme Bolte, Tam Le, Edouard Pauwels. Subgradient sampling for nonsmooth nonconvex minimization. SIAM Journal on Optimization, 2023, 33 (4), pp.2542-2569. ⟨10.1137/22M1479178⟩. ⟨hal-03579383v6⟩
1167 Consultations
422 Téléchargements

Altmetric

Partager

More