CATHODOLUMINESCENCE AND PHOTOLUMINESCENCE OF NV CENTERS
Résumé
Nitrogen-vacancy (NV) centers in diamond are a promising candidate as a solid state qubit memory for quantum information as they possess very long coherence times even at room temperature. Furthermore, NV centers are very sensitive to their electromagnetic environment and are addressable in the GHz frequency range. Here we review our progress towards the detection of single NV centers for the implementation of fast on demand coupling between NV centers and GHz electromagnetic fields. Precisely, we present efforts towards mapping NV centers with a cathodoluminescence setup. Developing such capability is important for patterning local one-qubit gates for the application of high amplitude electromagnetic fields as a tuning parameter.