Deep Surface Reconstruction from Point Clouds with Visibility Information - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

Deep Surface Reconstruction from Point Clouds with Visibility Information

Résumé

Most current neural networks for reconstructing surfaces from point clouds ignore sensor poses and only operate on raw point locations. Sensor visibility, however, holds meaningful information regarding space occupancy and surface orientation. In this paper, we present two simple ways to augment raw point clouds with visibility information, so it can directly be leveraged by surface reconstruction networks with minimal adaptation. Our proposed modifications consistently improve the accuracy of generated surfaces as well as the generalization ability of the networks to unseen shape domains. Our code and data is available at https://github.com/raphaelsulzer/dsrv-data.
Fichier principal
Vignette du fichier
2202.01810 (1).pdf (8.98 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03575517 , version 1 (15-02-2022)

Identifiants

Citer

Raphael Sulzer, Loic Landrieu, Alexandre Boulch, Renaud Marlet, Bruno Vallet. Deep Surface Reconstruction from Point Clouds with Visibility Information. 26th International Conference on Pattern Recognition (ICPR), Aug 2022, Montreal, Canada. pp.2415-2422, ⟨10.1109/ICPR56361.2022.9956560⟩. ⟨hal-03575517⟩
147 Consultations
109 Téléchargements

Altmetric

Partager

More