Calogero-Moser spaces vs unipotent representations - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

Calogero-Moser spaces vs unipotent representations

Résumé

Lusztig's classification of unipotent representations of finite reductive groups depends only on the associated Weyl group W (endowed with its Frobenius automorphism). All the structural questions (families, Harish-Chandra series, partition into blocks...) have an answer in a combinatorics that can be entirely built directly from W. Over the years, we have noticed that the same combinatorics seems to be encoded in the Poisson geometry of a Calogero-Moser space associated with W (roughly speaking, families correspond to ${\mathbb{B}}^\times$-fixed points, Harish-Chandra series correspond to symplectic leaves, blocks correspond to symplectic leaves in the fixed point subvariety under the action of a root of unity). The aim of this survey is to gather all these observations, state precise conjectures and provide general facts and examples supporting these conjectures.
Fichier principal
Vignette du fichier
cm-vs-unip.pdf (596.96 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03565126 , version 1 (10-02-2022)
hal-03565126 , version 2 (04-08-2022)
hal-03565126 , version 3 (05-10-2022)

Identifiants

  • HAL Id : hal-03565126 , version 1

Citer

Cédric Bonnafé. Calogero-Moser spaces vs unipotent representations. 2022. ⟨hal-03565126v1⟩

Collections

MIPS
44 Consultations
43 Téléchargements

Partager

More