Uniqueness, stability and numerical reconstruction of a time and space-dependent conductivity for an inverse hyperbolic problem - Archive ouverte HAL
Chapitre D'ouvrage Année : 2018

Uniqueness, stability and numerical reconstruction of a time and space-dependent conductivity for an inverse hyperbolic problem

Résumé

This paper is devoted to the reconstruction of the time and space-dependent coefficient in an inverse hyperbolic problem in a bounded domain. Using a local Carleman estimate we prove the uniqueness and a Hölder stability in the determining of the conductivity by a single measurement on the lateral boundary. Our numerical examples show possibility of the determination of the location and the large contrast of the space-dependent function in three dimensions.
Fichier principal
Vignette du fichier
SpringerPIERS_BCL.pdf (1021.76 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03560881 , version 1 (19-02-2022)

Identifiants

Citer

L Beilina, Michel Cristofol, S Li. Uniqueness, stability and numerical reconstruction of a time and space-dependent conductivity for an inverse hyperbolic problem. Yu. G. Smirnov; L. Beilina. Non Linear and Inverse Problems in Electromagnetics, 243, Springer, pp.133-145, 2018, Springer Proceedings in Mathematics & Statistics, ⟨10.1007/978-3-319-94060-1_10⟩. ⟨hal-03560881⟩
55 Consultations
55 Téléchargements

Altmetric

Partager

More