Turbulence in electromagnetically driven Keplerian flows
Résumé
The flow of an electrically conducting fluid in a thin disc under the action of an azimuthal Lorentz force is studied experimentally. At small forcing, the Lorentz force is balanced by either viscosity or inertia, yielding quasi-Keplerian velocity profiles. For very large current I and moderate magnetic field B, we observe a new regime, fully turbulent, which exhibits large fluctuations and a Keplerian mean rotation profile, where r is the distance from the axis. In this turbulent regime, the dynamics is typical of thin layer turbulence, characterized by a direct cascade of energy towards the small scales and an inverse cascade to large scales. Finally, at very large magnetic field, this turbulent flow bifurcates to a quasi-bidimensional turbulent flow involving the formation of a large scale condensate in the horizontal plane. These results are well understood as resulting from an instability of the Bödewadt-Hartmann layers at large Reynolds number and discussed in the framework of similar astrophysical flows.
Domaines
Mécanique [physics]Origine | Fichiers produits par l'(les) auteur(s) |
---|