Tykhonov triples, well-posedness and convergence results - Archive ouverte HAL
Article Dans Une Revue Carpathian Journal of Mathematics Année : 2021

Tykhonov triples, well-posedness and convergence results

Résumé

"In this paper we present a unified theory of convergence results in the study of abstract problems. To this end we introduce a new mathematical object, the so-called Tykhonov triple $\cT=(I,\Omega,\cC)$, constructed by using a set of parameters $I$, a multivalued function $\Omega$ and a set of sequences $\cC$. Given a problem $\cP$ and a Tykhonov triple $\cT$, we introduce the notion of well-posedness of problem $\cP$ with respect to $\cT$ and provide several preliminary results, in the framework of metric spaces. Then we show how these abstract results can be used to obtain various convergences in the study of a nonlinear equation in reflexive Banach spaces. "

Dates et versions

hal-03558591 , version 1 (04-02-2022)

Identifiants

Citer

Yi-Bin Xiao, Mircea Sofonea. Tykhonov triples, well-posedness and convergence results. Carpathian Journal of Mathematics, 2021, 37 (1), pp.135-143. ⟨10.37193/CJM.2021.01.14⟩. ⟨hal-03558591⟩

Collections

UNIV-PERP LAMPS
33 Consultations
0 Téléchargements

Altmetric

Partager

More